首页> 外文期刊>Biomedical signal processing and control >Automated arrhythmia classification using depthwise separable convolutional neural network with focal loss
【24h】

Automated arrhythmia classification using depthwise separable convolutional neural network with focal loss

机译:使用具有焦损的深度可分离的卷积神经网络自动性心律失常分类

获取原文
获取原文并翻译 | 示例

摘要

Arrhythmia was one of the primary causes of morbidity and mortality among cardiac patients. Early diagnosis was essential in providing intervention for patients suffering from cardiac arrhythmia. Convolution neural network (CNN) was widely used for electrocardiogram (ECG) classification. However, the conventional CNN method only worked well for balanced dataset. Therefore, a depthwise separable convolutional neural network with focal loss (DSC-FL-CNN) method was proposed for automated arrhythmia classification with imbalance ECG dataset. The focal loss contributed to improving the arrhythmia classification performances with imbalance dataset, especially for those arrhythmias with small samples. Meanwhile, the DSC-FL-CNN could reduce the number of parameters. The model was trained on the MIT-BIH arrhythmia database and it evaluated the performance of 17 categories of arrhythmia classification. Comparing with state-of-the-art methods, the experimental results showed that the proposed model reached an overall macro average F1-score with 0.79, which achieved an improvement for arrhythmia classification.
机译:心律失常是心脏病患者发病率和死亡率的主要原因之一。早期诊断对于提供心律失常患者的干预方面是至关重要的。卷积神经网络(CNN)广泛用于心电图(ECG)分类。但是,传统的CNN方法仅适用于平衡数据集。因此,提出了一种具有焦损(DSC-FL-CNN)方法的深度可分离的卷积神经网络,用于使用不平衡的ECG数据集进行自动性心律失常分类。局灶性损失有助于改善具有不平衡数据集的心律失常分类性能,特别是对于具有小样本的那些心律失常。同时,DSC-FL-CNN可以减少参数的数量。该模型在MIT-BIH心律失常数据库上培训,并评估了17个类别的心律失常分类的性能。比较与最先进的方法相比,实验结果表明,所提出的模型达到了0.79的整体宏观平均F1分,这取得了改善的心律失常分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号