首页> 外文期刊>Biomedical signal processing and control >Self-speculation of clinical features based on knowledge distillation for accurate ocular disease classification
【24h】

Self-speculation of clinical features based on knowledge distillation for accurate ocular disease classification

机译:基于知识蒸馏的临床特征对准确眼镜疾病分类的自猜测

获取原文
获取原文并翻译 | 示例

摘要

Ocular diseases can lead to irreversible vision impairment if not treated timely. Various imaging techniques have been developed to aid in the detection of ocular diseases, including the widely employed color fundus photography. Nevertheless, early-stage ocular diseases are difficult to be accurately diagnosed because of the few visible symptoms, and automatic ocular disease classification based only on imaging is extremely challenging. In this paper, we propose a knowledge distillation-based method to improve the performance of imaging-based automatic ocular disease classification models. Specifically, two deep neural networks are optimized sequentially. A teacher network is trained that can exploit the information from inputs of both color fundus photographs and radiologists provided clinical features. Then, through distilling the knowledge of the teacher model, a student network is learned that can self-speculate the clinical features-relevant information from the sole inputs of images. Extensive experiments validate that our student model can largely recover the performance of the teacher model and thus, the proposed method can significantly enhance the imaging-based ocular disease diagnosis without the reliance on clinical features.
机译:如果未及时治疗,眼部疾病可能导致不可逆的视觉障碍。已经开发了各种成像技术以帮助检测眼部疾病,包括广泛采用的彩色眼底摄影。然而,由于少数可见症状,难以准确地诊断早期的眼部疾病,并且仅基于成像的自动疾病分类非常具有挑战性。本文提出了一种基于知识蒸馏的方法,提高了成像的自动眼疾病分类模型的性能。具体地,两个深神经网络被顺序优化。培训教师网络,可以利用来自两种颜色眼底照片和放射科学家的输入的信息提供临床特征。然后,通过蒸馏教师模型的知识,学习了学生网络,可以从图像的唯一输入中自动推出临床功能相关信息。广泛的实验验证,我们的学生模型可以在很大程度上恢复教师模型的性能,因此,所提出的方法可以显着提高基于成像的眼部疾病诊断,而无需依赖临床特征。

著录项

  • 来源
    《Biomedical signal processing and control》 |2021年第5期|102491.1-102491.9|共9页
  • 作者单位

    Shanghai Jiao Tong Univ Sch Biomed Engn Inst Med Robot Shanghai 200240 Peoples R China;

    Chinese Acad Sci Paul C Lauterbur Res Ctr Biomed Imaging Shenzhen Inst Adv Technol Shenzhen 518055 Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Key Lab Comp Vis & Pattern Recognit SIAT SenseTime Joint Lab Shenzhen 518000 Peoples R China|Shenzhen Inst Artificial Intelligence & Robot Soc SIAT Branch Shenzhen 518000 Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Key Lab Comp Vis & Pattern Recognit SIAT SenseTime Joint Lab Shenzhen 518000 Peoples R China|Shenzhen Inst Artificial Intelligence & Robot Soc SIAT Branch Shenzhen 518000 Peoples R China;

    Shanghai Jiao Tong Univ Sch Biomed Engn Inst Med Robot Shanghai 200240 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ocular disease classification; Knowledge distillation; Clinical feature self-speculation; Multi-label annotation;

    机译:眼部疾病分类;知识蒸馏;临床特征自猜测;多标签注释;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号