首页> 外文期刊>Biomedical signal processing and control >Skin lesion segmentation from dermoscopic images by using Mask R-CNN, Retina-Deeplab, and graph-based methods
【24h】

Skin lesion segmentation from dermoscopic images by using Mask R-CNN, Retina-Deeplab, and graph-based methods

机译:通过使用掩模R-CNN,视网膜 - DEEPLAB和基于曲线图的方法从Dermoscopic图像的皮肤病变分割

获取原文
获取原文并翻译 | 示例

摘要

Background and objective: Timely diagnosis of skin cancer which is one of the most common cancers can greatly prevent death. Automatic skin lesion segmentation is an important part of an automatic skin cancer diagnosis system. Due to the wide variety in color, location, size, shape, and boundary contrast of lesions, the lesion segmentation is still a challenging problem.Methods: In this study, we present a two-stage automatic skin lesion segmentation method. In the first stage, a detection-based segmentation structure, Retina-Deeplab, is proposed to be combined with the Mask R-CNN, which inherently detects and segments objects simultaneously. To combine the results of these two segmentation methods, two geodesic-based and graph-based combination approaches are proposed.Results: The proposed method is evaluated using three well-known skin image datasets (ISBI 2017, DermQuest, and PH2). Through the proposed two-step graph-based combination strategy, the Jaccard value of the overall lesion segmentation method reached 80.04%, which is 3.54% higher than the winner of the ISBI 2017 lesion segmentation challenge.Conclusions: The proposed Retina-Deeplab segmentation method reached about 1% of the Jaccard value higher than the Mask R-CNN. Our overall segmentation method considered both overall characteristics of lesions in all images (by using CNN-based methods in the first stage) and image-specific features of lesions (by using geodesicbased/graph-based combination approaches in the second stage). The proposed two-step geodesic-based and graph-based combination approaches performed better than earlier combination strategies. Experiments demonstrated that the overall proposed lesion segmentation methods outperformed other state-of-the-art methods on well-known datasets.
机译:背景和目的:及时诊断皮肤癌,是最常见的癌症之一,可以大大防止死亡。自动皮肤病变分割是自动皮肤癌诊断系统的重要组成部分。由于各种颜色,位置,尺寸,形状和病变的边界对比度,病变分割仍然是一个具有挑战性的问题。在这项研究中,我们介绍了一种两级自动皮肤病变分段方法。在第一阶段,提出基于检测的分割结构Retina-Deebleab与掩模R-CNN组合,其同时固有地检测和区段对象。为了结合这两个分割方法的结果,提出了两个基于Geodeic和图形的组合方法。结果:使用三个众所周知的皮肤图像数据集(ISBI 2017,Dermquest和PH2)评估所提出的方法。通过提出的两步图的组合策略,总病变分割方法的Jaccard值达到80.04%,比ISBI 2017 Lesion细分挑战的获胜者高3.54%。结论:提出的视网膜 - DEEPLAB分割方法达到比掩模R-CNN高的Jaccard值的1%。我们的整体分割方法认为所有图像中病变的总体特征(通过在第一阶段中使用基于CNN的方法)和病变的图像特征(通过在第二阶段中使用基于Geodesic基于/图形的组合方法)。所提出的两步基于GeodeSic的基于图的基于图形的组合方法比早期的组合策略更好。实验表明,整体提出的病变分段方法在众所周知的数据集上表现出其他最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号