首页> 外文期刊>Biomedical signal processing and control >LNCDS: A 2D-3D cascaded CNN approach for lung nodule classification, detection and segmentation
【24h】

LNCDS: A 2D-3D cascaded CNN approach for lung nodule classification, detection and segmentation

机译:LNCDS:肺结结分类,检测和分割的2D-3D级联CNN方法

获取原文
获取原文并翻译 | 示例

摘要

The early detection of lung cancer is attained with the detection of initial stage nodules (3 - 30mm) which can exorbitantly increase the 5-year survival rate of lung cancer patients. Nodules are very small size circumscribed structures in the lungs and are difficult to detect due to their size. The identification of nodule is also more challenging due to similarly resembling structures like non-nodules that contains features which could make it identifiable as a nodule. Therefore, to deal with these challenging issues, we proposed a novel approach for segmentation, classification and detection of lung nodules from CT scan images. In our proposed method we involve a maximum intensity projection technique as a part of image preprocessing method. We demonstrated our experimentation and proposed SquExUNet segmentation model and 3D-NodNet classification model on publicly available Lung Image Database Consortium ? Image Database Resource Initiative (LIDC), LNDb Challenge Dataset and purely independent Indian Lung CT Image Database (ILCID) clinical dataset. We proposed a 2D-3D cascaded CNN strategy for detection of nodule that yields the accurately segmented and classified nodule. Results obtained with proposed method indicates that we have successfully detected and segmented the lung nodules effectively, compared to existing lung nodule detection and segmentation algorithms. We achieved a Dice-Coefficient metrics of 0.80 for segmentation of nodule and 90.01% Sensitivity for nodule detection.
机译:通过检测初期结节(3-30mm)的检测,获得了肺癌的早期检测,这可能过度增加肺癌患者的5年生存率。结节在肺中非常小的尺寸外接结构,并且由于其尺寸而难以检测。由于含有类似特征的非结节的类似结构类似地,结节的鉴定也更具挑战性,该结构类似于可以使其可识别为结节的特征。因此,为了处理这些挑战性问题,我们提出了一种新的CT扫描图像分割,分类和检测肺结节的方法。在我们所提出的方法中,我们涉及最大强度投影技术作为图像预处理方法的一部分。我们在公开可用的肺部图像数据库联盟上展示了我们的实验和拟议的Squexunet分割模型和3D-Nodnet分类模型?图像数据库资源计划(LIDC),LNDB挑战数据集和纯独立印度肺CT图像数据库(ILCID)临床数据集。我们提出了一种用于检测结节的2D-3D级联CNN策略,其产生精确分段和分类的结节。用所提出的方法获得的结果表明,与现有的肺结节检测和分割算法相比,我们已成功检测并有效地分段肺结节。我们实现了0.80的骰子系数测量,用于结节分段和结核检测的90.01%敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号