首页> 外文期刊>Biomedical signal processing and control >A review on cephalometric landmark detection techniques
【24h】

A review on cephalometric landmark detection techniques

机译:头部地标检测技术综述

获取原文
获取原文并翻译 | 示例

摘要

Landmark identification is crucial in quantifying cephalometric analysis. Manual tracing of landmarks is a tedious, laborious task and prone to human errors, thereby, necessitating a need to develop efficient automated methods for landmark identification. The advent of artificial intelligence and machine learning has made the automation of cephalometric landmarking, seemingly possible. Techniques such as active shape modelling, active appearance modelling, random forest regression-voting, Convolutional Neural Network (CNN), fuzzy systems and many others have rendered promising results in this field. This work reviews and critically analyses various techniques used for cephalometric landmark identification. This study also highlights current applications, addresses gaps in literature and presents the open challenges in this field.
机译:地标识别对于定量头部测量分析至关重要。 地标的手动追踪是一种繁琐,艰苦的任务,易于人类错误,从而需要为地标识别开发有效的自动化方法。 人工智能和机器学习的出现使得头孢甲测定仪的自动化,似乎是可能的。 诸如主动形状建模,主动外观建模,随机森林回归投票,卷积神经网络(CNN),模糊系统等的技术的技术使得这一领域的有希望的结果呈现。 这项工作评价和批判性地分析了用于头部测量的各种技术。 本研究还突出了当前的应用,解决了文学中的差距,并呈现了这一领域的开放挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号