首页> 外文期刊>Biomedical signal processing and control >DepHNN: A novel hybrid neural network for electroencephalogram (EEG)-based screening of depression
【24h】

DepHNN: A novel hybrid neural network for electroencephalogram (EEG)-based screening of depression

机译:Dephnn:用于抑郁症的脑电图(EEG)的新型混合神经网络

获取原文
获取原文并翻译 | 示例

摘要

Depression is a psychological disorder characterized by the continuous occurrence of bad mood state. It is critical to understand that this disorder is severely affecting people of multiple age groups across the world. This illness is now considered as a global issue and its early diagnosis will be effective in saving the lives of many people. This mental disorder can be diagnosed with the help of Electroencephalogram (EEG) signals as an analysis of these signals can indicate the prevailing mental state of the patients. This paper elaborates on the advantages of a fully automated Depression Detection System, as manual analysis of the EEG signal is very time consuming, tedious and it requires a lot of experience. This research paper presents a novel EEG based computer-aided (CAD) Hybrid Neural Network that can be identified as DepHNN (Depression Hybrid Neural Network) for depression screening. The proposed method uses Convolutional Neural Network (CNN) for temporal learning, windowing and long-short term memory (LSTM) architectures for the sequence learning process. In this model, EEG signals have been obtained from 21 drug-free, symptomatic depressed, and 24 normal patients using neuroscan. The model has less time and minimized computation complexity as it uses the windowing technique. It has attained an accuracy of 99.10% with mean absolute error (MAE) of 0.2040. The results show that the developed hybrid CNN-LSTM model is accurate, less complex, and useful in detecting depression using EEG signals.
机译:抑郁症是一种心理障碍,其特征在于持续发生的心情状态。重要的是要理解这种疾病严重影响世界各地多年群体的人。这种疾病现在被视为全球问题,其早期诊断将有效地拯救许多人的生命。这种精神障碍可以在脑电图(EEG)信号的帮助下被诊断为这些信号的分析可以表明患者的普遍精神状态。本文详细说明了全自动抑郁检测系统的优势,因为对脑电图信号的手动分析非常耗时,繁琐,它需要很多经验。该研究论文提出了一种新的基于EEG的计算机辅助(CAD)混合神经网络,其可以被识别为抑郁筛查的DEPHNN(抑郁混合神经网络)。该方法使用卷积神经网络(CNN)用于序列学习过程的时间学习,窗口和长短短期存储器(LSTM)架构。在该模型中,EEG信号已经从21种无毒,症状抑制和24例使用Neuroscan获得。当它使用窗口技​​术时,该模型具有更少的时间和最小化的计算复杂性。它的准确性为99.10%,平均误差(MAE)为0.2040。结果表明,开发的混合CNN-LSTM模型是准确的,更复杂,可用于使用EEG信号检测凹陷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号