首页> 外文期刊>Biomedical signal processing and control >Construction of compressive measurement matrix based on sinusoidal function called Sinusoidal Sensing Matrix (SSM)
【24h】

Construction of compressive measurement matrix based on sinusoidal function called Sinusoidal Sensing Matrix (SSM)

机译:基于正弦传感矩阵的正弦函数的压缩测量矩阵构建(SSM)

获取原文
获取原文并翻译 | 示例

摘要

Compression sensing theory enables a safe reconstruction of signals under certain conditions. Random measurement (sensing) matrix Phi is one of the necessary conditions which give a strong impact on the behavior of the method used to reconstruct the signal. A deterministic method is therefore proposed to construct a new matrix called Sinusoidal Sensing Matrix (SSM) for compressing sensing theorem. The SSM matrix depends on its built upon generating equation used both Sin and Cos function depend upon the number of compressed samples. This new matrix is very simple and easy to create but very effective and can be generated in transmission and distention end without a need to send it, only need in Rx side knowledge of signal length. The new matrix interval meets the Restricted Isometry Property (RIP) characteristic with high probability.The simulation experiments of one- and two- dimensional signals, using a new matrix show a superior in evaluating recovered signals with parameters and the visual effect of the restored images.
机译:压缩感测理论可以在某些条件下安全地重建信号。随机测量(传感)矩阵PHI是对用于重建信号的方法的行为产生强烈影响的必要条件之一。因此提出了一种确定性方法来构建名为SINUNORAL传感矩阵(SSM)的新矩阵,用于压缩传感定理。 SSM矩阵取决于其在生成方程时基于SIN和COS函数的基础,取决于压缩样本的数量。这种新的矩阵非常简单且易于创造,但非常有效,可以在传输和脱节结束时生成,无需发送它,只需要在Rx侧的信号长度知识中的知识。新的矩阵间隔满足具有高概率的受限制的等距特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号