首页> 外文期刊>Biomedical signal processing and control >Anterior chamber angle classification in anterior segment optical coherence tomography images using hybrid attention based pyramidal convolutional network
【24h】

Anterior chamber angle classification in anterior segment optical coherence tomography images using hybrid attention based pyramidal convolutional network

机译:基于杂交注意力的金字塔卷积网络,前段光学相干断层扫描图像中的前腔角分层

获取原文
获取原文并翻译 | 示例

摘要

As the main cause of irreversible visual impairment, angle-closure glaucoma (ACG) can be detected with anterior segment optical coherence tomography (AS & ndash;OCT). The automatic classification of anterior chamber angles (ACA) into closed angle, narrowed angle and open angle in the AS & ndash;OCT images is highly significant for understanding glaucoma progression. The traditional techniques for image classification usually rely on the extraction of handcrafted features from the images. Despite the popularity of deep learning methods in image classification, very few researches have been done to utilize them for the multi-class classification of AS & ndash;OCT images. In this work, a deep learning based algorithm is proposed for accurate ACA classification in AS & ndash;OCT images. The proposed method learns the distinguishable representations from numerous training AS & ndash;OCT images using the pyramidal convolution which contains multi-scale of kernels, where each scale includes several kinds of filters with changing depth and size. In this way, it can facilitate capturing the different levels of subtle visual cues that cannot be modeled by the handcrafted features. In addition, the skip connection has been adopted to concatenate the feature maps output at different levels to explore the correlation among them better. Moreover, the hybrid attention module including spatial attention and channel attention is introduced to emphasize important spatial and channel-wise information and reduce redundant information to increase the classification accuracy. We have evaluated classification performance of the proposed algorithm on 2636 ACA images from the Zhongshan Ophthalmic Center, Sun Yat-sen University in China, which is the only public ACG dataset in the world. The experimental results show that our algorithm can classify ACA as closed angle, narrowed angle and open angle effectively and it outperforms existing popular deep learning methods by providing higher specificity, sensitivity, accuracy and balanced accuracy.
机译:作为不可逆转的视觉损伤的主要原因,可以通过前段光学相干断层扫描(AS&Ndash; OCT)来检测角度闭合青光眼(ACG)。 AS&Ndash中的前室角度(ACA)的自动分类为闭合角度,变窄角度和开口角度; OCT图像非常重要,对于理解青光眼进展非常重要。图像分类的传统技术通常依赖于从图像中提取手工特征。尽管在图像分类中深入学习方法的普及,但很少有研究以利用它们的AS&ndash的多级分类; OCT图像。在这项工作中,提出了一种基于深度学习的算法,用于AS&ndash中的准确ACA分类; OCT图像。所提出的方法从诸如&ndash的众多培训中学习可区分的表示; OCT图像使用包含多尺度内核的金字塔卷积,其中每种刻度包括改变深度和尺寸的几种过滤器。通过这种方式,它可以促进捕获无法通过手工特征建模的不同级别的微妙视觉提示。此外,还采用了跳过连接来连接不同级别输出的特征映射,以探讨它们之间的相关性更好。此外,引入包括空间关注和信道注意的混合注意力模块,以强调重要的空间和通道信息,并减少冗余信息以增加分类精度。我们在中国孙中山大学中山眼科中心的2636年ACA图像中评估了算法的分类性能,这是世界上唯一的公共ACG数据集。实验结果表明,我们的算法可以通过提供更高的特异性,灵敏度,准确度和平衡准确度,有效地将ACA分类为闭角,变窄角度和开口角度,并且优于现有的流行深度学习方法。

著录项

  • 来源
    《Biomedical signal processing and control》 |2021年第1期|102686.1-102686.12|共12页
  • 作者单位

    Huazhong Univ Sci & Technol Coll Life Sci & Technol Dept Biomed Engn Minist Educ Key Lab Mol Biophys Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Tongji Hosp Tongji Med Coll Dept Ophthalmol Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Tongji Hosp Tongji Med Coll Dept Ophthalmol Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Coll Life Sci & Technol Dept Biomed Engn Minist Educ Key Lab Mol Biophys Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Coll Life Sci & Technol Dept Biomed Engn Minist Educ Key Lab Mol Biophys Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Coll Life Sci & Technol Dept Biomed Engn Minist Educ Key Lab Mol Biophys Wuhan 430074 Peoples R China;

    Huazhong Univ Sci & Technol Coll Life Sci & Technol Dept Biomed Engn Minist Educ Key Lab Mol Biophys Wuhan 430074 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Anterior chamber angle classification; AS-OCT; Deep learning; Pyramidal convolution; Hybrid attention;

    机译:前房角分类;AS-OCT;深度学习;金字塔卷积;杂交注意;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号