首页> 外文期刊>Biomedical signal processing and control >Automatic vessel segmentation in X-ray angiogram using spatio-temporal fully-convolutional neural network
【24h】

Automatic vessel segmentation in X-ray angiogram using spatio-temporal fully-convolutional neural network

机译:使用时空全卷积神经网络X射线血管造型机的自动血管分割

获取原文
获取原文并翻译 | 示例

摘要

Vessel segmentation from X-ray coronary angiogram (CAG) is essential in computer-aided diagnosis of cardiovascular diseases. Automatic segmentation is a challenging task due to the complex vascular structures and poor quality of CAG images. A new deep learning method is presented to automatically extract coronary arteries from dynamic CAG sequences. A spatio-temporal fully-convolutional neural network (ST-FCN) is designed to provide an effective way for segmenting entire vessel trees from motion sequences. An improved post-processing method subsequently refines the segmentation results by making a good use of spatial connectivity and temporal coherence between the moving CAG images. The ST-FCN model outperformed the state-of-the-art segmentation methods with dice similarity coefficient (DSC) of 0.90, accuracy (AC) of 0.92, and sensitivity (SN) of 0.89. Moreover, the ST-FCN achieved superior results in the stenosis detection task with AC of 0.95, SN of 0.92, specificity of 0.95, F1-score of 0.90 among all the reference approaches. The experimental results demonstrated that the integration of spatial and temporal information into a deep learning framework could enhance the vessel segmentation and might be useful for early detection of cardiovascular diseases.
机译:来自X射线冠状动脉血管造影(CAG)的血管分割对于心血管疾病的计算机辅助诊断至关重要。由于复杂的血管结构和CAG图像质量差,自动分割是一个具有挑战性的任务。提出了一种新的深度学习方法,以自动提取动态CAG序列中的冠状动脉。时空全卷积神经网络(ST-FCN)旨在提供一种从运动序列分割整个血管树的有效方法。改进的后处理方法随后通过在移动的CAG图像之间良好地使用空间连接和时间相干性来改进分段结果。 ST-FCN模型优于骰子相似系数(DSC)的最先进的分段方法,0.90,精度(AC)为0.92,灵敏度(SN)为0.89。此外,ST-FCN在狭窄检测任务中实现了优异的狭窄检测任务,其AC为0.95,SN为0.92,特异性0.95,F1分数在所有参考方法中为0.90。实验结果表明,空间和时间信息将空间和时间信息集成到深度学习框架中可以增强血管分割,并且可用于早期检测心血管疾病。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号