首页> 外文期刊>Biomedical signal processing and control >Cuff-less continuous blood pressure measurement based on multiple types of information fusion
【24h】

Cuff-less continuous blood pressure measurement based on multiple types of information fusion

机译:基于多种信息融合的袖手延续的连续血压测量

获取原文
获取原文并翻译 | 示例

摘要

Non-invasive and cuff-less real-time continuous blood pressure monitoring plays an important role in both intensive care unit (ICU) and the management of chronic diseases such as hypertension and cardiovascular disease. Although pulse wave transit time (PTT) and pulse waveform parameters (PWPs) can be extracted from photoplethysmography (PPG) and electrocardiographic (ECG) to estimate blood pressure, the value of blood pressure is also constrained by personal characteristics parameters (PCPs). For example, the blood pressure may vary with height, weight and age. In this paper, we present a cuff-less continuous blood pressure measurement method based on multiple types of information fusion. First, we recruited 186 volunteers and measured their personal data (PPG signal, ECG signal, height, age, weight, gender). Second, extract the PTT and PWPs from the PPG signal and ECG signal. Then, according to the extracted parameters, the blood pressure models of control group and experimental group were established respectively (the experimental group uses the multiple types of information fusion method to model, the control group only considers PTT and PWPs). Experiments show that, comparing with the control group, the experimental group systolic blood pressure (SBP) correlation was increased from 0.9355 to 0.9948, root mean square error (RMSE) was reduced from 5.2 mmHg to 1.5 mmHg, while the diastolic blood pressure (DBP) correlation was improved from 0.9331 to 0.9931, RMSE was reduced from 2.9 mmHg to 0.9 mmHg. Therefore, the modeling method proposed in this paper can get more accurate blood pressure values. Further promotion, to achieve the measurement with the "modeling" method, all "restriction" elements must be taken into account in order to obtain a more accurate and stable model.
机译:非侵入性和较少的实时连续血压监测在重症监护室(ICU)中起着重要作用以及高血压和心血管疾病等慢性疾病的管理。尽管脉搏波转运时间(PTT)和脉冲波形参数(PWPS)可以从光学读物血晶摄影(PPG)和心电图(ECG)中提取以估计血压,但血压的值也受到个人特征参数(PCP)的限制。例如,血压可以随高度,体重和年龄而变化。在本文中,我们提出了一种基于多种信息融合的袖断连续血压测量方法。首先,我们招募了186名志愿者并测量了他们的个人数据(PPG信号,ECG信号,身高,年龄,体重,性别)。其次,从PPG信号和ECG信号中提取PTT和PWP。然后,根据提取的参数,分别建立了对照组和实验组的血压模型(实验组使用多种信息融合方法来模拟,对照组仅考虑PTT和PWP)。实验表明,与对照组相比,实验组收缩压(SBP)相关从0.9355增加到0.9948,根均方误差(RMSE)从5.2mmHg降低至1.5mmHg,而舒张压(DBP )相关性从0.9311增加到0.9931,RMSE从2.9mmHg降低至0.9 mmHg。因此,本文提出的建模方法可以获得更准确的血压值。进一步推广,为了通过“建模”方法来实现测量,必须考虑所有“限制”元素,以获得更准确且稳定的模型。

著录项

  • 来源
    《Biomedical signal processing and control》 |2021年第1期|102549.1-102549.8|共8页
  • 作者单位

    Tianjin Univ State Key Lab Precis Measuring Technol & Instrume Tianjin 300072 Peoples R China|Tianjin Univ Tianjin Key Lab Biomed Detecting Tech & Instrumen Tianjin 300072 Peoples R China;

    Tianjin Univ State Key Lab Precis Measuring Technol & Instrume Tianjin 300072 Peoples R China|Tianjin Univ Tianjin Key Lab Biomed Detecting Tech & Instrumen Tianjin 300072 Peoples R China;

    Guangdong Polytech Normal Univ Coll Mech & Elect Engn Guangzhou 510635 Peoples R China;

    Tianjin Univ State Key Lab Precis Measuring Technol & Instrume Tianjin 300072 Peoples R China|Tianjin Univ Tianjin Key Lab Biomed Detecting Tech & Instrumen Tianjin 300072 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Photoplethysmography (PPG); Electrocardiographic (ECG); Blood pressure model; Multiple types of information fusion; Personal characteristic parameters;

    机译:PhotoPrySmography(PPG);心电图(ECG);血压模型;多种类型的信息融合;个人特征参数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号