首页> 外文期刊>Biomedical signal processing and control >Emotion recognition from EEG signals using empirical mode decomposition and second-order difference plot
【24h】

Emotion recognition from EEG signals using empirical mode decomposition and second-order difference plot

机译:使用经验模式分解和二阶差异绘制的EEG信号的情感识别

获取原文
获取原文并翻译 | 示例

摘要

Emotion recognition from electroencephalography (EEG) signals is a very cost-effective method to monitor the general well-being of an individual, an employee of an organization, or to cater to mental health patients. But it is a challenging task owing to the non-stationarity of the EEG signals. Extracting relevant features through signal processing techniques that can be used to classify patterns in the EEG signal leading to different emotions is a difficult task. A dataset for emotion analysis with physiological signals DEAP [1] consists of EEG signals of 32 participants are categorized on the quadrant of valence, arousal, dominance, and liking, which signifies how they are associated with different emotions. In this paper, an efficient classifier for emotion/quadrant recognition from EEG signals with exceptional accuracy is presented. The data preprocessing strategy adapted is Empirical Mode Decomposition (EMD), which decomposes the signals into several oscillatory Intrinsic Mode Functions (IMF). Features are extracted from Second order difference plots (SODP) are area, mean, and central tendency measure of the elliptical region. Wilcoxson Test was performed to ensure the statistical significance of the extracted features with p 0.05. Support Vector Machine (SVM) and 2-hidden layer Multilayer Perceptron is used for binary and multi-class classification of emotions in the quadrant of valence, arousal, dominance, and liking. The performance of the models is evaluated by statistical parameters- sensitivity, specificity, and accuracy. The classification results from Multilayer Perceptron outperformed that of SVM, and the maximum accuracy achieved, is 100 % in the binary classification of High and Low Arousal space.
机译:从脑电图(EEG)信号的情感识别是一种非常具有成本效益的方法,可以监控个人的一般福祉,组织的员工,或迎合精神卫生患者。但由于EEG信号的非实用性,这是一个具有挑战性的任务。通过信号处理技术提取相关特征,可用于对导致不同情绪的脑电图信号中的模式进行分类是一项艰巨的任务。具有生理信号DEAP的情绪分析的数据集[1]由32名参与者的EEG信号组成,分类在价值,唤醒,支配和喜欢的象限上,这表示如何与不同的情绪相关。在本文中,提出了一种有效分类器,用于从EEG信号具有卓越精度的EEG信号的情感/象限识别。适用的数据预处理策略是经验模式分解(EMD),其将信号分解为几个振荡的内在模式功能(IMF)。从二阶差异图(SODP)中提取特征是椭圆区域的面积,平均值和中央趋势测量。进行Wilcoxson测试以确保提取的特征的统计学意义P <0.05。支持向量机(SVM)和2个隐藏层Multidayer Perceptron用于象限,唤醒,优势和喜好中的象限中的二进制和多级情绪分类。模型的性能通过统计参数,特异性和准确性来评估。 Multidayer Perceptron的分类结果表现优于SVM的,并且在高谐波空间的二进制分类中实现的最大精度是100%。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号