首页> 外文期刊>Biomedical signal processing and control >EEG Signal denoising using hybrid approach of Variational Mode Decomposition and wavelets for depression
【24h】

EEG Signal denoising using hybrid approach of Variational Mode Decomposition and wavelets for depression

机译:eeg信号去噪使用变分模式分解和抑郁小波的混合方法

获取原文
获取原文并翻译 | 示例

摘要

Background: Artifact contamination reduces the accuracy of various EEG based neuroengineering applications. With time, biomedical signal denoising has been the utmost protuberant research area. So, the noise-reducing algorithm should be carefully deployed since artifacts result in degraded performance.Motivation: Artifact reduction or denoising in degraded EEG signals requires a lot of improvement. The main aim of this paper is to present the investigation carried out to suppress the noise found in EEG signals of depression.Method: The focus is to compare the effectiveness of the physiological signal denoising approaches based on discrete wavelet transform (DWT) and wavelet packet transform (WPT) combined with VMD (variational mode decomposition), namely VMD-DWT and VMD-WPT, with other approaches. In these approaches, the detrended fluctuation analysis (DFA) will be used to define the mode selection criteria. First of all, VMD will decompose the signal into various components, then DWT and WPT will be used to denoise the artifactual components rather than completely rejecting these with DFA as the mode selection basis. Simulations have been carried out on artificially contaminated and real databases of depression to demonstrate the effectiveness of the proposed technique using the performance parameters such as SNR, PSNR, and MSE.Contribution: It can be said that sufficient removal of artifacts is gained by VMD- DFA-WPT and VMD-DFA-DWT though VMD-DFA-WPT outperforms VMD- DFA-DWT and others. Such an artifact removal system may offer an effective solution for clinicians as a crucial stage of pre-processing and may prevent delay in diagnosis for depression signals.
机译:背景:文物污染降低了基于eEG的神经工程应用的准确性。随着时间的推移,生物医学信号去噪是最大的突出研究区域。因此,应该仔细地部署降噪算法,因为伪像导致性能降级。:在降级的脑电图信号中减少或去噪需要大量的改进。本文的主要目的是提出进行的调查,以抑制抑制凹陷EEG信号中的噪声。方法:重点是基于离散小波变换(DWT)和小波包的生理信号去噪方法的有效性转换(WPT)与VMD(变分模式分解)相结合,即VMD-DWT和VMD-WPT,具有其他方法。在这些方法中,将用于定义模式选择标准的次数波动分析(DFA)。首先,VMD将向信号分解为各种组件,然后DWT和WPT将用于去代取艺术组件,而不是完全拒绝与DFA为模式选择的基础。已经在人为污染和真实数据库中进行了抑郁症的仿真,以展示使用SNR,PSNR和MSE等性能参数的所提出的技术的有效性。能够说,通过VMD来获得足够的伪影去除伪影DFA-WPT和VMD-DFA-DWT虽然VMD-DFA-WPT优于VMD-DFA-DWT等。这种神器去除系统可以为临床医生提供有效的解决方案,作为预处理的关键阶段,可以防止抑制抑制信号的诊断延迟。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号