首页> 外文期刊>Biomedical signal processing and control >EMG hand gesture classification using handcrafted and deep features
【24h】

EMG hand gesture classification using handcrafted and deep features

机译:EMG手势分类使用手工制作和深度特征

获取原文
获取原文并翻译 | 示例

摘要

Currently, electromyographic (EMG) signal gesture recognition is performed with devices of many channels. Each channel gives a signal that must be filtered and processed, which sometimes can be a slow process that requires high-cost hardware to process all the data quickly enough. This paper presents a combined feature approach method for EMG classification using handcrafted features obtained from time-spectral discrete analysis and deep features extracted from a convolutional neural network (CNN), which classifies signals recorded from a single channel device. The method proposed only requires 100 signals from each gesture for training, thus the time needed to train the system is reduced. The proposed approach combines handcrafted features from a time-spectral analysis, like mean absolute value (MAV), slope sign changes (SSC), peak frequencies, wavelet transform (WT) coefficients, etc, and deep features to create the feature vector. The feature vector is then classified using a multi-layer perceptron classifier (MLPC). Experimental results showed an average classification accuracy of 81.54%, 88.54%, and 94.19% for 8, 6, and 5 gesture-classes, respectively. The results could serve as a basis for a real implementation of EMG signal gesture recognition with a device of only one channel.
机译:目前,用许多信道的设备执行电拍摄(EMG)信号手势识别。每个通道都提供了一个必须过滤和处理的信号,有时可以是需要高成本硬件来处理所有数据的缓慢过程。本文介绍了使用从时间谱离散分析和从卷积神经网络(CNN)中提取的深度分类的手工特征来进行EMG分类的组合特征方法方法(CNN),其分类从单通道设备记录的信号。所提出的方法仅需要来自每个手势的100个信号进行训练,因此减少了训练系统所需的时间。所提出的方法将手工特征与时间谱分析相结合,如平均值值(MAV),斜率标志变化(SSC),峰值频率,小波变换(WT)系数等创建特征向量的深度特征。然后使用多层Perceptron分类器(MLPC)对特征向量进行分类。实验结果分别显示出81.54%,88.54%和8,6和5个姿态课程的平均分类精度为81.54%,88.54%和94.19%。结果可以用作具有仅一个通道的设备的EMG信号手势识别的真实实现的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号