首页> 外文期刊>Biomedical signal processing and control >A new approach for automatic detection of focal EEG signals using wavelet packet decomposition and quad binary pattern method
【24h】

A new approach for automatic detection of focal EEG signals using wavelet packet decomposition and quad binary pattern method

机译:使用小波分组分解和四重二进制方法自动检测焦点eEG信号的新方法

获取原文
获取原文并翻译 | 示例

摘要

A comprehensive feature representation for electroencephalogram (EEG) signal to achieve effective epileptic focus localization using a one-dimensional quad binary pattern (QBP) is proposed in this work. The wavelet packet decomposition (WPD), entropies, and QBP methods are applied to EEG signals for identifying the non-focal and focal classes. The proposed approach consists of three strategies, based on the local pattern transformation of EEG signals using QBP. The time-domain EEG signals are transformed into the QBP domain, and histogram features are extracted in the first strategy. Secondly, the nonlinear features like sample entropy, log energy entropy, fuzzy entropy, permutation entropy, and approximate entropy are computed from the EEG signals and concatenated with the QBP features. In the third strategy, the EEG signals are decomposed into sub-bands by employing WPD, and histogram features based on QBP are extracted from each sub-band. The computed feature sets are used to classify the non-focal and focal EEG signals using an artificial neural network (ANN). For the selection of best settings in WPD, the EEG signals are decomposed in seven commonly used wavelet families with different decomposition levels, and the wavelet family providing the highest classification accuracy with the minimal computational cost is found out. The proposed approach is validated using the widely recognized Bern-Barcelona EEG dataset. The proposed method achieved a classification accuracy of 95.74 % on this dataset using the proposed WPD based QBP approach. In conclusion, the proposed approach is efficient in identifying the focal EEG signals and can be useful for accurate detection of focal regions in the epilepsy diagnosis. (C) 2020 Elsevier Ltd. All rights reserved.
机译:在这项工作中提出了脑电图(EEG)信号的综合特征表示,以实现使用一维Quad二进制模式(QBP)的有效癫痫聚焦定位。小波分组分解(WPD),熵和QBP方法应用于EEG信号,用于识别非焦点和焦点类。该方法的方法包括三种策略,基于使用QBP的eEG信号的本地模式转换。时域EEG信号被转换为QBP域,并且在第一个策略中提取直方图特征。其次,从EEG信号计算样本熵,日志能量熵,模糊熵,置换熵和近似熵等非线性特征,并与QBP功能连接。在第三策略中,EEG信号通过采用WPD分解成子带,并且基于QBP的直方图特征从每个子带中提取。计算的特征集用于使用人工神经网络(ANN)对非焦点和焦点EEG信号进行分类。为了选择WPD中的最佳设置,EEG信号在具有不同分解水平的七个常用的小波系列中分解,并且发现了以最小计算成本提供最高分类精度的小波家庭。使用广泛认可的Bern-Barcelona EEG数据集进行了验证所提出的方法。所提出的方法使用所提出的基于WPD的QBP方法在该数据集上实现了95.74%的分类精度。总之,所提出的方法在鉴定焦点脑电图信号中有效,可用于准确检测癫痫诊断中的焦点区域。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号