首页> 外文期刊>Biomedical signal processing and control >Automatic scoring of apnea and hypopnea events using blood oxygen saturation signals
【24h】

Automatic scoring of apnea and hypopnea events using blood oxygen saturation signals

机译:使用血氧饱和信号自动评分呼​​吸暂停和缺氧事件

获取原文
获取原文并翻译 | 示例

摘要

The obstructive sleep apnea-hypopnea (OSAH) syndrome is a common and frequently undiagnosed sleep disorder. It is characterized by repeated events of partial (hypopnea) or total (apnea) obstruction of the upper airway while sleeping. To quantify the severity of the pathology, the Apnea Hypopnea Index (AHI) is used. This index is defined as the average number of apnea and hypopnea events per hour of sleep. Discriminating between these two types of events is a very challenging task and in fact most traditional methods fail to do it. A reliable recognition of such events would not only allow for an accurate estimation of the AHI index, but it would also provide useful information regarding the severity of the pathology, which is very important for clinical purposes. In this work we use a method for structured dictionary learning, which is found to be suitable for automatically differentiating between apnea and hypopnea using as a unique input blood oxygen saturation signals. The method is tested for both classification of segments and OSAH screening on the Sleep Heart Health Study database. For OSAH screening, a receiver operating characteristic curve analysis shows an average area under the curve of 0.934 and diagnostic sensitivity and specificity of 89.10% and 86.70%, respectively. These results represent important improvements with respect to all state-of-the-art procedures which where used for comparison purposes. They also provide a solid support for our conclusion that the method can be used for screening OSAH syndrome more reliably and conveniently, using only a pulse oximeter. (C) 2020 Elsevier Ltd. All rights reserved.
机译:阻塞性睡眠呼吸暂停症(OSAH)综合征是一种常见且常见的未确诊的睡眠障碍。它的特征在于睡觉时上气道的部分(呼吸缺陷)或总(呼吸暂停)梗阻的重复事件。为了量化病理学的严重程度,使用了呼吸暂停呼吸暂停指数(AHI)。该指数定义为每小时睡眠的呼吸暂停和缺氧事件的平均数。歧视这两种类型的事件是一个非常具有挑战性的任务,实际上,大多数传统方法都没有这样做。对这些事件的可靠识别不仅可以准确地估计AHI指数,而且还提供关于病理严重程度的有用信息,这对于临床目的非常重要。在这项工作中,我们使用一种用于结构化词典学习的方法,这被发现适合于使用作为独特的输入血氧饱和信号来自动地区分呼吸暂停和缺氧。在睡眠心脏健康研究数据库上进行段和OSAH筛选的分类测试该方法。对于OSAH筛选,接收器操作特征曲线分析显示了0.934曲线下的平均面积,诊断敏感性和特异性分别为89.10%和86.70%。这些结果对于所有最先进程序的重要改进,其中用于比较目的。他们还提供了坚实的支持,我们的结论是,该方法可用于筛选OSAH综合征,仅使用脉冲血氧仪来更可靠和方便地。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号