首页> 外文期刊>Biomedical signal processing and control >Robust spiking cortical model and total-variational decomposition for multimodal medical image fusion
【24h】

Robust spiking cortical model and total-variational decomposition for multimodal medical image fusion

机译:多峰医学图像融合的强大尖刺皮质模型及全部变分分解

获取原文
获取原文并翻译 | 示例

摘要

In field of medical image, a large number of related works demonstrated that the decomposition theories (such as multi-scale transform (MST) techniques) have better performance in preserving details and structures information. However, the most of hierarchical structure-based methods fail to appropriately separate energy and detailed information, they even produce some unsatisfied effects such as low-contrast resolution and anamorphose. To address the above issues, we present a modified image decomposition algorithm to get a good trade-off between speed and performance. Specifically, it utilizes the total-variational transform into moving least squares method (TV-MLS), which can make the result more robust to noise and fully reserve the dominant structure. Firstly, we perform total-variational decomposition on the source images, and yield a series of detail layers and base layers. Next, the layers are fused using the robust adaptive dual-channel spiking cortical model (RA-DCSCM), CNNs and the fine-designed fusion rule. Eventually, we provide extensive qualitative analysis for the proposed fusion scheme in both subjective visual inspection and quality metrics to verify that our method is more competitive against other existing methods. (C) 2020 Elsevier Ltd. All rights reserved.
机译:在医学图像领域,大量相关工作表明,分解理论(如多尺度变换(MST)技术)在保留细节和结构信息方面具有更好的性能。然而,基于分层结构的方法无法采用适当分离的能量和详细信息,它们甚至产生一些不满意的效果,例如低对比度分辨率和多色。为了解决上述问题,我们提出了一个修改的图像分解算法,以在速度和性能之间获得良好的权衡。具体地,它利用总变分换变换到移动最小二乘法(TV-MLS),这可以使结果更加坚固地噪声并完全保留主导结构。首先,我们在源图像上执行全变分解分解,并产生一系列细节层和基层。接下来,使用鲁棒自适应双通道尖刺皮质模型(RA-DCSCM),CNN和精细设计的融合规则,这些层融合。最终,我们为主观视觉检查和质量指标中提出的融合方案提供了广泛的定性分析,以验证我们的方法对其他现有方法更具竞争力。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号