首页> 外文期刊>Biomedical signal processing and control >An adaptive multi-domain feature joint optimization framework based on composite kernels and ant colony optimization for motor imagery EEG classification
【24h】

An adaptive multi-domain feature joint optimization framework based on composite kernels and ant colony optimization for motor imagery EEG classification

机译:基于复合核和蚁群优化的自适应多域特征联合优化框架,用于电动机图像EEG分类

获取原文
获取原文并翻译 | 示例

摘要

Brain computer interface (BCI) is a novel technology that translates human intention into command to control external device. Common spatial pattern (CSP) algorithm is most frequently applied for feature engineering in motor imagery (MI) based BCI system. How to select the most suitable spatial channels, temporal & frequency parameters for different people before CSP is still a challenging issue which greatly affects the performance of MI based BCI system. In this paper, we introduce an adaptive multi-domain feature joint optimization framework. Specifically, random forest (RF) and composite kernel support vector machine (CKSVM) algorithms are used to measure the significances of different spatial channels and local temporal-frequency segments. An ant colony optimization (ACO) based scheme is proposed to search the most suitable spatial channels and temporal-frequency segments. We evaluated the effectiveness of the proposed algorithm on public BCI competition III data set IVa and two self-collected MI EEG datasets. For BCI competition III data set IVa, our method outperforms some other close related algorithms in the literature. For the two self-collected datasets, compared to the traditional manual parameter setting, the classification performance is proven to significantly improve (more than 15%) adopting our adaptive multi-domain parameters. Since our proposed method can simultaneously and automatically optimize subject-specific features in the entire spatial-temporal-frequency domains, the most discriminative CSP features can be selected and the performance of MI EEG classification is significantly improved. Thus, our research is a useful complement to the BCI field. (C) 2020 Elsevier Ltd. All rights reserved.
机译:脑电脑界面(BCI)是一种新颖的技术,将人类意图转化为控制外部设备的命令。基于电机图像(MI)的BCI系统中的特征工程,通常应用常见的空间模式(CSP)算法。如何在CSP之前选择最合适的空间通道,时间和频率参数,以便在CSP仍然是一个具有挑战性的问题,这极大地影响了基于MI的BCI系统的性能。在本文中,我们介绍了一个自适应多域特征联合优化框架。具体而言,随机森林(RF)和复合内核支持向量机(CKSVM)算法用于测量不同空间通道和局部时间频率段的重要性。提出基于蚁群优化(ACO)的方案来搜索最合适的空间通道和时间频率段。我们评估了所提出的公共BCI竞赛III数据集IVA和两个自收集MI EEG数据集的算法的有效性。对于BCI竞争III数据集IVA,我们的方法优于文献中的一些其他相关的相关算法。对于两个自收集的数据集,与传统的手动参数设置相比,经过验证的分类性能,可以显着提高(超过15%)采用我们的自适应多域参数。由于我们所提出的方法可以同时和自动优化整个空间频率域中的特定主题特征,因此可以选择最辨别的CSP功能,并且显着提高了MI EEG分类的性能。因此,我们的研究是对BCI领域有用的补充。 (c)2020 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Biomedical signal processing and control》 |2020年第8期|101994.1-101994.15|共15页
  • 作者单位

    Huzhou Univ Sch Informat Engn Huzhou 313000 Peoples R China|Huzhou Univ Sch Informat Engn Zhejiang Prov Key Lab Smart Management & Applicat Huzhou 313000 Peoples R China;

    Southeast Univ Sch Instrument Sci & Engn Nanjing 210096 Peoples R China;

    Huzhou Univ Sch Informat Engn Huzhou 313000 Peoples R China|Huzhou Univ Sch Informat Engn Zhejiang Prov Key Lab Smart Management & Applicat Huzhou 313000 Peoples R China;

    Huzhou Univ Sch Informat Engn Huzhou 313000 Peoples R China|Huzhou Univ Sch Informat Engn Zhejiang Prov Key Lab Smart Management & Applicat Huzhou 313000 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Brain computer interface; Motor imagery; Random forest; Composite kernel support vector machine; Ant colony optimization;

    机译:脑电脑界面;电机图像;随机森林;复合内核支持向量机;蚁群优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号