首页> 外文期刊>Biomedical signal processing and control >Diagnosis of Alzheimer's disease using universum support vector machine based recursive feature elimination (USVM-RFE)
【24h】

Diagnosis of Alzheimer's disease using universum support vector machine based recursive feature elimination (USVM-RFE)

机译:基于Universum支持向量机的递归特征消除诊断阿尔茨海默病的疾病(USVM-RFE)

获取原文
获取原文并翻译 | 示例

摘要

Alzheimer's disease is one of the most common causes of death in today's world. Magnetic resonance imaging (MRI) provides an efficient and non-invasive approach for diagnosis of Alzheimer's disease. Efficient feature extraction techniques are needed for accurate classification of MRI images. Motivated by the work on support vector machine based recursive feature elimination (SVM-RFE) [16], we propose a novel feature selection technique to incorporate prior information about data distribution in the recursive feature elimination process. Our method is termed as universum support vector machine based recursive feature elimination (USVM-RFE). The proposed method provides global information about data in the RFE process as compared to the local approach of feature selection in SVM-RFE. We also present the application of feature selection and classification algorithms on both voxel based as well as volume based morphometry analysis of structural MRI images (ADNI database). Feature selection is performed using MRI data of brain tissues such as gray matter, white matter, and cerebrospinal fluid. USVM-RFE provides improvement over SVM-RFE in classification of control normal (CN), mild cognitive impairment (MCI), and Alzheimer's disease (AD) subjects. Moreover, better accuracy is obtained by USVM-RFE with lesser number of features in comparison to SVM-RFE. This leads to identification of prominent brain regions for feature selection and classification of MRI images. The highest accuracies obtained by our method for classification of CN vs AD, CN vs MCI, and MCI vs AD are 100%, 90%, and 73.68%, respectively. (C) 2020 Elsevier Ltd. All rights reserved.
机译:阿尔茨海默病是当今世界中最常见的死亡原因之一。磁共振成像(MRI)提供了诊断阿尔茨海默病的有效和非侵入性方法。需要高效的特征提取技术来准确分类MRI图像。基于支持向量机的递归功能消除(SVM-RFE)的工作激励(SVM-RFE)[16],我们提出了一种新颖的特征选择技术,将关于递归特征消除过程中的数据分布的先前信息包含在内。我们的方法被称为Universum支持向量机的递归特征消除(USVM-RFE)。与SVM-RFE中的特征选择的本地方法相比,该方法提供有关RFE过程中数据的全局信息。我们还介绍了基于体素的特征选择和分类算法的应用以及结构MRI图像(ADNI数据库)的卷的形态学分析。使用脑组织的MRI数据进行特征选择,例如灰质,白质和脑脊髓液。 USVM-RFE在控制正常(CN)分类,轻度认知障碍(MCI)和阿尔茨海默病(AD)受试者中提供改善SVM-RFE。此外,与SVM-RFE相比,USVM-RFE具有较少数量的特征,可以获得更好的精度。这导致识别MRI图像的特征选择和分类的突出大脑区域。通过我们的CN VS AD,CN VS MCI和MCI VS AD的分类方法获得的最高精度分别为100%,90%和73.68%。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号