首页> 外文期刊>Biomedical signal processing and control >Estimating neural sources using a worst-case robust adaptive beamforming approach
【24h】

Estimating neural sources using a worst-case robust adaptive beamforming approach

机译:使用最坏情况鲁棒自适应波束形成方法估算神经源

获取原文
获取原文并翻译 | 示例

摘要

Recently, brain source localization and beamforming methods have played an important role in enhancing the utility of the electroencephalograph (EEG) and/or the magnetoencephalograph (MEG). Source localization methods are in general very sensitive to parameter values used to describe the underlying lead-field matrix, such as head shape, electrode positions, conductivity of various tissues of the head, etc. Errors in these parameter values can cause significant degradation in performance of these algorithms.In this paper, we develop a robust minimum variance beamformer (RMVB) specifically for EEG applications that can deal with an arbitrary mismatch between the assumed and true lead field matrix. The approach optimizes the worst-case uncertainty performance, sacrificing a distortionless response in exchange for more robust performance. The performance of the RMVB is compared with the classic minimum variance beamformer (MVB) as well as its regularized and eigenspace-based variations. The simulation scenarios highlight the superior ability of the RMVB to cope with arbitrary mismatches. (C) 2019 Elsevier Ltd. All rights reserved.
机译:最近,脑源定位和波束成形方法在增强脑电图(EEG)和/或磁性肺场(MEG)的效用方面发挥了重要作用。源定位方法通常对用于描述底层的铅域矩阵的参数值非常敏感,例如头部形状,电极位置,头部各种组织的电导率等。这些参数值中的错误可能会导致性能显着降低在这些算法中。在本文中,我们开发了一个强大的最小方差波束形成器(RMVB),专门用于可以处理假定和真实的铅字段矩阵之间的任意不匹配的EEG应用程序。该方法优化了最坏情况的不确定性性能,牺牲了扭曲的响应以换取更强大的性能。将RMVB的性能与经典的最小方差波束形成器(MVB)进行比较,以及其正则化和基于Eigenspace的变体。仿真方案突出了RMVB对应对任意不匹配的卓越能力。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号