首页> 外文期刊>Biomedical signal processing and control >Reduced complexity algorithm for heart rate monitoring from PPG signals using automatic activity intensity classifier
【24h】

Reduced complexity algorithm for heart rate monitoring from PPG signals using automatic activity intensity classifier

机译:使用自动活动强度分类器从PPG信号中降低了心率监测的复杂性算法

获取原文
获取原文并翻译 | 示例

摘要

Photoplethysmography (PPG) is a well-studied and promising technique to detect heart rate (HR) using cheap, non-invasive, wrist-wearable sensors that sense the amount of light reflected by the skin, related to the blood flow beneath. Still, the main issue is the high sensitivity to motion, which produces severe artifacts in the signal, often impeding accurate HR tracking. In this paper we present a method that combines an automatic activity intensity classifier, to select the proper amount of artifact cleaning that needs to be performed on the signal, with a geometric-based signal subspace approach to estimate the HR component of the PPG signal. Experimental evaluation is performed over a widely available dataset and the results are compared to an ECG-derived golden standard. (C) 2019 Elsevier Ltd. All rights reserved.
机译:光学电瓶描绘(PPG)是一种良好的研究和有希望的技术,用于使用廉价,无侵入性的腕式可穿戴传感器检测心率(HR),从而感觉与皮肤反射的光量,与下方的血流有关。尽管如此,主要问题是对运动的高敏感性,它在信号中产生严重的伪像,通常会阻碍准确的HR跟踪。在本文中,我们介绍了一种组合自动活动强度分类器的方法,以选择需要在信号上执行的适当量的伪像清洁,其具有基于几何的信号子空间方法来估计PPG信号的HR分量。实验评估在广泛可用的数据集中进行,结果与ECG衍生的金标准进行了比较。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号