首页> 外文期刊>Biomedical signal processing and control >Single channel high noise level ECG deconvolution using optimized blind adaptive filtering and fixed-point convolution kernel compensation
【24h】

Single channel high noise level ECG deconvolution using optimized blind adaptive filtering and fixed-point convolution kernel compensation

机译:使用优化的盲自适应滤波和定点卷积核补偿的单通道高噪声级ECG反卷积

获取原文
获取原文并翻译 | 示例

摘要

An electrocardiogram (ECG) is used to record the electrical activity of the heart. However, ECG signals are susceptible to the noise from various sources which increases the probability of misinterpretation and can affect the diagnostic process. Traditional noise cancellation techniques, which uses finite and deterministic coefficient, are not efficient, since the ECG signals are non-stationary. Thus, adaptive filters are commonly utilized on such signal as they can adjust their coefficient according to the changing nature of non-stationary signal. Adaptive algorithms still have a disadvantage that they require the model of noise or desired signal. In this paper, a novel algorithm is introduced based on fixed-point convolution kernel compensation for finding a model for using an adaptive filter; then a recursive least square method is used for completing steps of deconvolution of the ECG signal. The deconvolution method can be used for denoising ECG signals in very low signal to noise ratio circumstances and also can be used in blind source separation applications such as separation of fetal ECG from maternal ECG. ECG signals were utilized in this study are taken from the MIT-BIH Arrhythmia database for showing the performance of the algorithm on denoising applications. The results demonstrate that the proposed algorithm renders a much-improved performance in removing the noise from ECG signals, especially in a scenario where signal to noise ratio is negative. Moreover, the noninvasive fetal ECG dataset (NI-FECG) provided by Physionet is also used for fetal ECG extraction by a single thoracic channel. By comparing fetal ECG extraction methods in the literature and the proposed method, it reveals that the proposed method can extract the QRS complex of fetal ECG by a single thoracic channel as accurate as other methods which use abdominal channels. (C) 2019 Elsevier Ltd. All rights reserved.
机译:心电图(ECG)用于记录心脏的电活动。但是,ECG信号容易受到来自各种来源的噪声的影响,这会增加误解的可能性,并可能影响诊断过程。由于ECG信号不稳定,因此使用有限和确定性系数的传统噪声消除技术效率不高。因此,自适应滤波器通常用于这种信号,因为它们可以根据非平稳信号的变化性质来调整其系数。自适应算法仍然有一个缺点,即它们需要噪声或所需信号的模型。本文介绍了一种基于定点卷积核补偿的新型算法,用于寻找使用自适应滤波器的模型。然后使用递推最小二乘法完成ECG信号的反卷积步骤。去卷积方法可用于在信噪比非常低的情况下对ECG信号进行降噪,也可用于盲源分离应用,例如将胎儿ECG与母体ECG分离。在这项研究中使用的ECG信号取自MIT-BIH心律失常数据库,以显示该算法在去噪应用中的性能。结果表明,所提出的算法在去除ECG信号的噪声方面表现出了大大提高的性能,尤其是在信噪比为负的情况下。此外,Physionet提供的非侵入性胎儿ECG数据集(NI-FECG)也可用于通过单个胸部通道提取胎儿ECG。通过将文献中的胎儿心电图提取方法与提出的方法进行比较,表明该方法可以通过单个胸腔通道提取胎儿心电图的QRS复合体,与使用腹部通道的其他方法一样准确。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号