首页> 外文期刊>Biomedical signal processing and control >Generalization of a wavelet-based algorithm to adaptively detect activation intervals in weak and noisy myoelectric signals
【24h】

Generalization of a wavelet-based algorithm to adaptively detect activation intervals in weak and noisy myoelectric signals

机译:基于小波的算法的泛化,可自适应检测弱和嘈杂的肌电信号中的激活间隔

获取原文
获取原文并翻译 | 示例

摘要

This study introduces an adaptive implementation of a Continuous Wavelet Transform (CWT) decomposition technique used to estimate the timing of muscular activation in weak and noisy myoelectric signals. The algorithm updates automatically the threshold based on the statistical properties of the EMG data, through an iterative estimation of the Signal-to-Noise Ratio (SNR). Moreover, it includes a stopping criterion for the number of CWT decomposition levels, and this allows a relevant decrease of the computational burden. This algorithm was applied to both synthetic and semi-synthetic signals, and compared against the original formulation of the CWT-based technique and a common threshold-based technique for the detection of muscle activations. Performance of these techniques was assessed by using Bias, Relative Timing Error and Accuracy of the detection. Bias values resulted lower than 18 ms, Relative Timing Error lower than 5% and Accuracy greater than 97% for all the tested SNR (ranging from -2 dB to 10 dB), and with a substantial independence from SNR levels. The performance was shown to hold also if the hypothesis of absence of muscular activation in the reference window cannot be guaranteed. The results show that the proposed approach, which is adaptive, operator-independent and iterative, performs properly when applied to weak and noisy myoelectric signals, and is thus a valid general solution when dealing with clinical conditions where muscular activity is low, and when recording conditions cannot be entirely controlled. (C) 2020 Elsevier Ltd. All rights reserved.
机译:这项研究介绍了连续小波变换(CWT)分解技术的自适应实现,该技术用于估计弱和嘈杂的肌电信号中肌肉激活的时间。该算法通过对信噪比(SNR)进行迭代估计,基于EMG数据的统计属性自动更新阈值。而且,它包括针对CWT分解级别数的停止标准,这可以显着减少计算负担。该算法既适用于合成信号也适用于半合成信号,并与基于CWT的技术和基于普通阈值的技术用于检测肌肉激活的原始公式进行了比较。通过使用偏差,相对时序误差和检测精度来评估这些技术的性能。对于所有测试的SNR(在-2 dB到10 dB之间),偏差值均小于18 ms,相对定时误差小于5%,准确度大于97%,并且与SNR水平基本无关。如果不能保证参考窗中没有肌肉激活的假说,也可以证明该性能。结果表明,所提出的方法是自适应的,独立于操作员的并且是迭代的,当应用于微弱且嘈杂的肌电信号时可以正确执行,因此在处理肌肉活动低的临床情况以及记录时是有效的通用解决方案条件不能完全控制。 (C)2020 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号