首页> 外文期刊>Biomedical signal processing and control >Longitudinal brain tumor segmentation prediction in MRI using feature and label fusion
【24h】

Longitudinal brain tumor segmentation prediction in MRI using feature and label fusion

机译:使用特征和标记融合的MRI纵向脑肿瘤分割预测

获取原文
获取原文并翻译 | 示例

摘要

This work proposes a novel framework for brain tumor segmentation prediction in longitudinal multimodal MRI scans, comprising two methods; feature fusion and joint label fusion (JLF). The first method fuses stochastic multi-resolution texture features with tumor cell density feature to obtain tumor segmentation predictions in follow-up timepoints using data from baseline pre-operative timepoint. The cell density feature is obtained by solving the 3D reaction-diffusion equation for biophysical tumor growth modelling using the Lattice-Boltzmann method. The second method utilizes JLF to combine segmentation labels obtained from (i) the stochastic texture feature-based and Random Forest (RF)-based tumor segmentation method; and (ii) another state-of-the-art tumor growth and segmentation method, known as boosted Glioma Image Segmentation and Registration (GLISTRboost, or GB). We quantitatively evaluate both proposed methods using the Dice Similarity Coefficient (DSC) in longitudinal scans of 9 patients from the public BraTS 2015 multi-institutional dataset. The evaluation results for the feature-based fusion method show improved tumor segmentation prediction for the whole tumor(DSCWT = 0.314, p = 0.1502), tumor core (DSCTC = 0.332, p = 0.0002), and enhancing tumor (DSCET = 0.448, p = 0.0002) regions. The feature -based fusion shows some improvement on tumor prediction of longitudinal brain tumor tracking, whereas the JLF offers statistically significant improvement on the actual segmentation of WT and ET (DSCWT = 0.85 +/- 0.055, DSCET = 0.837 +/- 0.074), and also improves the results of GB. The novelty of this work is two-fold: (a) exploit tumor cell density as a feature to predict brain tumor segmentation, using a stochastic multi-resolution RF-based method, and (b) improve the performance of another successful tumor segmentation method, GB, by fusing with the RF-based segmentation labels. (C) 2019 Published by Elsevier Ltd.
机译:这项工作提出了一种在纵向多模式MRI扫描中预测脑肿瘤分割的新颖框架,包括两种方法:特征融合和联合标签融合(JLF)。第一种方法将随机多分辨率纹理特征与肿瘤细胞密度特征融合在一起,以使用来自基线术前时间点的数据在随访时间点获得肿瘤分割预测。细胞密度特征是通过使用Lattice-Boltzmann方法求解3D反应扩散方程进行生物物理肿瘤生长建模而获得的。第二种方法利用JLF组合从(i)基于随机纹理特征和基于随机森林(RF)的肿瘤分割方法获得的分割标签; (ii)另一种最先进的肿瘤生长和分割方法,称为增强胶质瘤图像分割和配准(GLISTRboost或GB)。我们使用骰子相似系数(DSC)对来自公共BraTS 2015多机构数据集的9位患者的纵向扫描进行定量评估,以评估这两种提议的方法。基于特征的融合方法的评估结果显示,整个肿瘤的肿瘤分割预测得到改善(DSCWT = 0.314,p = 0.1502),肿瘤核心(DSCTC = 0.332,p = 0.0002)和增强肿瘤(DSCET = 0.448,p = 0.0002)区域。基于特征的融合在纵向脑部肿瘤追踪的肿瘤预测方面显示出一些改进,而JLF在WT和ET的实际分割方面提供了统计学上的显着改进(DSCWT = 0.85 +/- 0.055,DSCET = 0.837 +/- 0.074),并提高了GB的效果。这项工作的新颖性有两个方面:(a)利用基于随机多分辨率RF的方法,利用肿瘤细胞密度作为预测脑肿瘤分割的功能,以及(b)提高另一种成功的肿瘤分割方法的性能(GB),将其与基于RF的分段标签融合在一起。 (C)2019由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号