首页> 外文期刊>Biomedical signal processing and control >Low-dose chest X-ray image super-resolution using generative adversarial nets with spectral normalization
【24h】

Low-dose chest X-ray image super-resolution using generative adversarial nets with spectral normalization

机译:使用生成对抗网络进行光谱归一化的低剂量胸部X射线图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Chest X-ray (CXR) imaging is one of the most widely-used and cost-effective technology for chest screening and diagnosis of Pulmonary diseases. An always concerned improvement about CXR is to reduce X-ray radiation while achieving ultra-high quality imaging with fine structural details since CXR involves ionizing radiation and tolerance of different populations. In this paper, we present a supervised generative adversarial nets approach to accurately recover high-resolution (HR) CXR images from low-resolution (LR) counterparts while keep pathological invariance. Specifically, the auxiliary label information is introduced to constrain the feature generation to attack the potential risk of pathological variance. Then, spectral normalization is designed to control the performance of discriminative network with the guarantee of theoretical demonstration in controlling Lipschitz bound of discriminator. Results from quantitative and qualitative evaluations demonstrate that our method delivers more authentic improvement for CXR super-resolution (SR) compared to recent state-of-the-art methods. The proposed method has outperformed average 13.0%, 12.2% in FSIM and 13.7%, 12.5% in MSIM on two datasets, respectively. Besides, the index of generative performance GAN-train and GAN-test have achieved average increment 9.3% and 10.5% on CXR2 dataset. Subjective evaluation on SR CXR has outperformed average score 0.425 and 0.525 in terms of pathological invariance and acceptability, respectively. (C) 2019 Published by Elsevier Ltd.
机译:胸部X射线(CXR)成像是用于胸部筛查和肺部疾病诊断的最广泛使用且最具成本效益的技术之一。关于CXR的一个始终关注的改进是减少X射线辐射,同时实现具有精细结构细节的超高质量成像,因为CXR涉及电离辐射和不同种群的耐受性。在本文中,我们提出了一种监督式生成对抗网络方法,以从低分辨率(LR)对应物中准确恢复高分辨率(HR)CXR图像,同时保持病理不变性。具体来说,引入辅助标签信息以约束特征生成,以攻击病理变异的潜在风险。然后,设计频谱归一化来控制判别网络的性能,并在控制判别器的Lipschitz界的理论演示的保证下。定量和定性评估的结果表明,与最新技术相比,我们的方法对CXR超分辨率(SR)提供了更多可靠的改进。所提出的方法在两个数据集上的表现分别优于FSIM的平均值13.0%,12.2%和MSIM的平均值13.7%,12.5%。此外,在CXR2数据集上,生成性能指标GAN-train和GAN-test的平均值分别达到9.3%和10.5%。 SR CXR的主观评价在病理不变性和可接受性方面分别优于平均分0.425和0.525。 (C)2019由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号