首页> 外文期刊>Biomedical signal processing and control >F-SVD based algorithm for variability and stability measurement of bio-signals, feature extraction and fusion for pattern recognition
【24h】

F-SVD based algorithm for variability and stability measurement of bio-signals, feature extraction and fusion for pattern recognition

机译:基于F-SVD的生物信号变异性和稳定性测量,特征提取和融合以进行模式识别的算法

获取原文
获取原文并翻译 | 示例

摘要

A support system with efficient learning framework helps eliciting complete knowledge of underlying phenomena of interest. It makes the analysis less-onerous, time-consuming and error-prone and thus promotes large scale applications. Such modeling requires profound understanding of available information and its appropriate utilization. Albeit success of electromyogram (EMG) support systems, challenges still exits specifically in early phase of design mainly due to inherent variations and complex data distribution patterns of signals. In this article, a frame singular value decomposition (F-SVD) based method-generalizing Canonical correlation analysis for automatic classification of EMG signals to diagnose amyotrophic lateral sclerosis (ALS), myopathy and normal subjects, is proposed. At first, signals are decomposed to formulate a set of vectors and performed subspace transformation to demonstrate the variability and stability of signals base on correlations between pairs of vectors. Besides, discrete Wavelet transformation is applied on generated vectors and correlation analysis is performed. Afterwards, taking highly correlated statistical measures a set of compact feature distributions are estimated and fused via two recently proposed parallel and serial feature fusion models. Finally two global descriptors for effective classifications of various EMG patterns are proposed. The efficacy of derived feature space is validated by intuitive, graphical and statistical analysis. The model performances are investigated over two datasets. It achieves accuracy of 98.10% and 97.60% over two and three-class groups of first dataset receptively. Accuracy over second dataset is 100% with a specificity of 100% and sensitivities of 100%. This is first time that F-SVD is employed for automatic classification of EMG. Experiments results on various datasets evince adequacy of our method. Further comparison of performance with state-of-the-art methods depicts that our method comparable or superior in terms of various performance metrics. (C) 2018 Elsevier Ltd. All rights reserved.
机译:具有有效学习框架的支持系统有助于充分了解潜在的潜在现象。它减少了分析的繁琐,耗时且容易出错,从而促进了大规模应用。这种建模需要深刻了解可用信息及其适当利用。尽管肌电图(EMG)支持系统取得了成功,但挑战仍然特别存在于设计的早期阶段,这主要是由于信号的固有变化和复杂的数据分布模式所致。在本文中,提出了一种基于框架奇异值分解(F-SVD)的方法—归纳规范相关分析,用于自动分类肌电图信号,以诊断肌萎缩性侧索硬化症(ALS),肌病和正常人。首先,将信号分解以表示一组向量,并进行子空间转换,以基于向量对之间的相关性来证明信号的可变性和稳定性。此外,对生成的矢量进行离散小波变换,并进行相关分析。然后,采用高度相关的统计量,通过两个最近提出的并行和串行特征融合模型,估计并融合了一组紧凑的特征分布。最后,提出了两种有效描述各种EMG模式的全局描述符。通过直观,图形和统计分析来验证派生特征空间的功效。在两个数据集上研究了模型性能。在第一个数据集的两个和三个类别的组上,其准确度分别达到98.10%和97.60%。第二个数据集的准确度为100%,特异性为100%,灵敏度为100%。这是F-SVD首次用于EMG的自动分类。在各种数据集上的实验结果证明了我们方法的适当性。对性能与最新方法的进一步比较表明,就各种性能指标而言,我们的方法具有可比性或优越性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号