首页> 外文期刊>Biomedical signal processing and control >Mutifractals based multimodal 3D image registration
【24h】

Mutifractals based multimodal 3D image registration

机译:基于多重形的多模态3D图像配准

获取原文
获取原文并翻译 | 示例

摘要

Multimodal registration is a method to register the volumes of different modalities, for e.g., computed tomography (CT) and magnetic resonance (MR). Mutual information (MI) based methods are widely used for multimodal registration. The MI characterizes the statistical dependence between the voxel intensities of volumes. Robustness of the MI based registration is affected, when there is a low correspondence between the voxel intensities of volumes. This can be improved by integrating the geometric characteristics of volumes like complexity, singularity and irregularity with registration. A novel approach for 3D multimodal image registration based on the multifractal characterization of volumes is being proposed in this paper. The proposed method uses multifractal formalism to incorporate geometric characteristics into registration. Multifractal formalism involves determination of Holder exponent followed by computation of Hausdorff dimension. Holder exponents quantify the local regularity of the volumes and Hausdorff dimensions quantify the global regularity (multifractality) of the volumes. The performance of the proposed algorithm is evaluated using synthetic phantom images for different noise levels and 41 clinical 3D brain images of 7 different patients from a public domain database. The above-mentioned test platforms highlight the efficiency of the proposed method towards improving the robustness and accuracy of registration. (C) 2018 Elsevier Ltd. All rights reserved.
机译:多峰配准是一种配准不同模态体积的方法,例如计算机断层扫描(CT)和磁共振(MR)。基于互信息(MI)的方法已广泛用于多模式注册。 MI描述了体素强度之间的统计依赖性。当体积的体素强度之间的对应关系较低时,会影响基于MI的配准的健壮性。可以通过将体积的几何特征(如复杂性,奇异性和不规则性)与配准相集成来改善这一点。本文提出了一种基于体积的多重分形特征的3D多峰图像配准的新方法。所提出的方法使用多重分形形式主义将几何特征纳入配准。多重分形形式主义涉及确定Holder指数,然后计算Hausdorff维数。持有者指数可量化体积的局部规律性,而Hausdorff尺寸可量化体积的整体规律性(多重分形)。使用来自不同领域的合成幻像图像和来自公共领域数据库的7位不同患者的41张临床3D脑图像,对所提出算法的性能进行了评估。上述测试平台突出了所提出的方法在提高配准的鲁棒性和准确性方面的效率。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号