首页> 外文期刊>Biomedical signal processing and control >MRI brain tumor segmentation based on texture features and kernel sparse coding
【24h】

MRI brain tumor segmentation based on texture features and kernel sparse coding

机译:基于纹理特征和核稀疏编码的MRI脑肿瘤分割

获取原文
获取原文并翻译 | 示例

摘要

An automatic brain tumor segmentation method based on texture feature and kernel sparse coding from FLAIR (fluid attenuated inversion recovery) contrast-enhanced MRIs (magnetic resonance imaging) is presented in this paper. First, the MRIs are pre-processed to reduce noise, enhance contrast and correct the intensity non-uniformity. Then sparse coding is performed on the first order and second order statistical eigenvector extracted from original MRIs which is a patch of 3 x 3 around the voxel. The kernel dictionary learning is used to extract the non-linear features to construct two adaptive dictionaries for healthy and pathologically tissues respectively. A kernel-clustering algorithm based on dictionary learning is developed to code the voxels, then the linear discrimination method is used to classify the target pixels. In the end, the flood-fill operation is used to improve the segmentation quality. The results demonstrate that the method based on kernel sparse coding has better capacity and higher segmentation accuracy with low computation cost. (C) 2018 Elsevier Ltd. All rights reserved.
机译:提出了一种基于纹理特征和FLAIR(流体衰减反转恢复)对比增强MRI(核磁共振成像)核仁稀疏编码的脑肿瘤自动分割方法。首先,对MRI进行预处理以降低噪声,增强对比度并纠正强度不均匀性。然后,对从原始MRI提取的一阶和二阶统计特征向量执行稀疏编码,原始MRI是围绕体素的3 x 3的补丁。核字典学习用于提取非线性特征,以分别构建针对健康和病理组织的两个自适应字典。提出了一种基于字典学习的核聚类算法对体素进行编码,然后采用线性判别法对目标像素进行分类。最后,使用洪水填充操作来提高分割质量。结果表明,基于核稀疏编码的方法具有更好的容量和更高的分割精度,且计算成本较低。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号