首页> 外文期刊>Biomedical signal processing and control >Computerized detection of spina bifida using SVM with Zernike moments of fetal skulls in ultrasound screening
【24h】

Computerized detection of spina bifida using SVM with Zernike moments of fetal skulls in ultrasound screening

机译:在超声筛查中使用支持向量机结合胎儿颅骨的Zernike矩对脊柱裂进行计算机检测

获取原文
获取原文并翻译 | 示例

摘要

A computer aided detection scheme for the neural tube defect of spina bifida is proposed. Features from Zernike moments of fetal skull regions viewed by ultrasound are utilized in SVM classification. Rotational invariance of magnitudes of Zernike moments and their easy normalization with respect to translation and scale make them attractive for image and shape description. In particular, they are perfect candidates for classifying shapes of fetal skulls that possess markers of spina bifida. The automated detection system may act in decision support to help specialists avoid false negatives. Problems of rarity are handled with combinations of oversampling and undersampling. A variant of the synthetic minority oversampling technique (SMOTE) and random undersampling (RU) have been applied on training data. Experiments show the trade-off in various performance indicators depending on different sampling choices. The average values of 0.6276 F-measure and 0.6306 GMRP are achieved on non-sampled (original) test sets when training is performed using sampled data after 400% borderline-SMOTE followed by 50% RU with respective accuracy and specificity realizations of 94% and 98%. (C) 2018 Elsevier Ltd. All rights reserved.
机译:提出了一种脊柱裂神经管缺陷的计算机辅助检测方案。通过SVM分类,利用超声观察到的胎儿颅骨区域的Zernike矩特征。 Zernike矩的大小的旋转不变性及其相对于平移和比例的轻松归一化使其对于图像和形状描述具有吸引力。特别是,它们是对具有脊柱裂标记物的胎儿头骨形状进行分类的理想候选者。自动检测系统可以在决策支持中发挥作用,以帮助专家避免误报。稀疏问题通过过采样和欠采样的组合来处理。合成少数样本过采样技术(SMOTE)和随机欠采样(RU)的一种变体已应用于训练数据。实验表明,取决于不同的采样选择,各种性能指标之间需要进行权衡。当在400%边界线SMOTE和50%RU后使用采样数据进行训练时,在非采样(原始)测试集上获得0.6276 F-measure和0.6306 GMRP的平均值,其准确度和特异度分别为94%和98%。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号