首页> 外文期刊>Biomedical signal processing and control >ECG-derived respiration estimation from single-lead ECG using gaussian process and phase space reconstruction methods
【24h】

ECG-derived respiration estimation from single-lead ECG using gaussian process and phase space reconstruction methods

机译:使用高斯过程和相空间重构方法从单导联心电图得出心电图呼吸

获取原文
获取原文并翻译 | 示例

摘要

Respiratory activity influences electrocardiographic measurements (ECG) in various ways. Therefore, extraction of respiratory information from ECG, namely ECG-derived respiratory (EDR), can be used as a promising noninvasive method to monitor respiration activity. In this paper, an automatic EDR extraction system using single-lead ECG is proposed. Respiration effects on ECG are categorized into two different models: additive and multiplicative based models. After selection of a proper model for each subject using a proposed criterion, gaussian process (GP) and phase space reconstruction area (PSRArea) are introduced as new methods of EDR extraction for additive and multiplicative models, respectively. We applied our algorithms on Fantasia database from Physionet, and the performance of our algorithms is assessed by comparing the EDR signals to the reference respiratory signal, using the normalized cross-correlation coefficient. The proposed method is also compared with other EDR techniques in the literature. The extracted EDRS using GP and PSRArea methods, considering their selected appropriate models, show mean correlations of 0.706 and 0.727 with reference respiration which is significantly better than most of the state-of-the-art methods. It can be seen that after selecting the model of each subject and using either PSRArea or GP (combined method), the correlation result, 0.717, is improved. Statistical significant differences (p 0.05) are found in the correlation coefficients of our algorithms and most of the state-of-the-art methods, showing that our combined methods outperforms them and is comparable to the well-known EDR technique, principal component analysis (PCA) based EDR extraction. A model selection criterion and two EDR extraction methods, GP and PSRArea, have been proposed. The combined method using GP and PSRArea following model selection for each subject yields EDR estimation system which results better than most of the state-of-the-art single-lead EDR extraction in terms of correlation coefficient and can be used as a promising algorithm to obtain ECG-derived respiratory signals. (C) 2018 Elsevier Ltd. All rights reserved.
机译:呼吸活动以各种方式影响心电图测量(ECG)。因此,从ECG中提取呼吸信息,即ECG衍生的呼吸(EDR),可用作监测呼吸活动的有前途的无创方法。本文提出了一种采用单导联心电图的自动EDR提取系统。呼吸对心电图的影响分为两种不同的模型:加性模型和乘性模型。在使用提出的标准为每个对象选择合适的模型之后,分别引入了高斯过程(GP)和相空间重构区域(PSRArea)作为分别用于加性模型和乘法模型的EDR提取新方法。我们将算法应用在Physionet的Fantasia数据库中,并使用归一化互相关系数将EDR信号与参考呼吸信号进行比较,从而评估了算法的性能。所提出的方法也与文献中的其他EDR技术进行了比较。考虑到它们选择的合适模型,使用GP和PSRArea方法提取的EDRS显示参考呼吸的平均相关系数为0.706和0.727,这比大多数最新方法显着更好。可以看出,在选择每个对象的模型并使用PSRArea或GP(组合方法)后,相关结果0.717得以改善。在我们的算法和大多数最新方法的相关系数中发现统计上的显着差异(p <0.05),表明我们的组合方法优于它们,并且可与众所周知的EDR技术(主要成分)相媲美分析(PCA)的EDR提取。提出了模型选择标准和两种EDR提取方法GP和PSRArea。针对每个主题,使用GP和PSRArea进行模型选择的组合方法产生了EDR估计系统,其结果在相关系数方面比大多数最新的单导程EDR提取要好,并且可以用作有前途的算法获得源自心电图的呼吸信号。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号