首页> 外文期刊>Biomedical signal processing and control >Airway segmentation for low-contrast CT images from combined PET/CT scanners based on airway modelling and seed prediction
【24h】

Airway segmentation for low-contrast CT images from combined PET/CT scanners based on airway modelling and seed prediction

机译:基于气道建模和种子预测的组合PET / CT扫描仪进行的低对比度CT图像气道分割

获取原文
获取原文并翻译 | 示例

摘要

Combined positron emission tomography (PET) and computed tomography (CT) scanning provides superior access to both functional information and the anatomical structures of the airway tree. However, due to the complex anatomical structures, limited image resolutions and partial volume effect (PVE), segmentation of airway trees from low-dose and low-contrast CT images from PET/CT scanning is a challenging task. Conventional airway segmentation algorithms usually produce less than satisfactory results. In this paper, we propose a novel region growing approach for automated airway tree segmentation in CT images from combined PET/CT scanners. In our approach, we employ prior anatomical knowledge of the airway to predict, extract, and validate the seeds of bronchi regions, and use those seeds to identify the airway branches that are not detectable by conventional 3D region growing. Through analyzing the size of the bronchi in two successive slices, this approach allows airway seeds to grow sufficiently while avoiding leakages. Our method was compared to the traditional 3D region growing algorithm on 14 clinical thoracic PET/CT images. The experimental results demonstrate that the proposed technique is capable of retrieving considerably larger number of branches and providing more accurate airway segmentation.
机译:结合正电子发射断层扫描(PET)和计算机断层扫描(CT)扫描可提供对功能信息和气道树解剖结构的出色访问。但是,由于复杂的解剖结构,有限的图像分辨率和部分体积效应(PVE),从PET / CT扫描的低剂量和低对比度CT图像中分割气道树是一项艰巨的任务。常规的气道分割算法通常产生不令人满意的结果。在本文中,我们提出了一种新的区域生长方法,用于组合PET / CT扫描仪的CT图像中的气道树自动分割。在我们的方法中,我们利用气道的先前解剖知识来预测,提取和验证支气管区域的种子,并使用这些种子来识别常规3D区域生长无法检测到的气道分支。通过分析两个连续切片中支气管的大小,此方法可使气道种子充分生长,同时避免泄漏。我们的方法在14张临床胸腔PET / CT图像上与传统3D区域生长算法进行了比较。实验结果表明,所提出的技术能够检索大量分支并提供更准确的气道分割。

著录项

  • 来源
    《Biomedical signal processing and control》 |2011年第1期|p.48-56|共9页
  • 作者单位

    Biomedkal and Multimedia Information Technology (BMIT) Research Group, School of Information Technologies, The University of Sydney, NSW 2006, Australia;

    Biomedkal and Multimedia Information Technology (BMIT) Research Group, School of Information Technologies, The University of Sydney, NSW 2006, Australia;

    Biomedkal and Multimedia Information Technology (BMIT) Research Group, School of Information Technologies, The University of Sydney, NSW 2006, Australia ,Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia;

    Biomedkal and Multimedia Information Technology (BMIT) Research Group, School of Information Technologies, The University of Sydney, NSW 2006, Australia ,Center for Multimedia Signal Processing, Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Biomedical system; Image segmentation; Combined PET/CT scanner; Airway segmentation; Region growing;

    机译:生物医学系统;图像分割;PET / CT组合扫描仪;气道分割;区域生长;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号