首页> 外文期刊>Biomedical signal processing and control >Directionlet transform based sharpening and enhancement of mammographic X-ray images
【24h】

Directionlet transform based sharpening and enhancement of mammographic X-ray images

机译:基于方向变换的乳腺X射线图像锐化和增强

获取原文
获取原文并翻译 | 示例

摘要

Due to difficulty in detecting the low contrast and noisy nature of X-ray mammography images, they have to be enhanced to obtain a clear and good view. Though Sharpening Technique (ST) is used to enhance the contrast, it introduces noise in the enhancement process, and they do not include anisotropic features. This paper proposes a ST, which uses multiscale linear and anisotropic geometrical features obtained from directionlet transform (DT). The newly formulated method that combines multidirectional geometrical information has various tunable parameters and improved noise control by means of multiscale features. The DT that uses skewed and elongated directional basis functions not only captures the point singularities, but also links them into linear structure. The performance of the proposed DT ST is compared with non-linear unsharp masking (NLUSM). While the DT and LoG based sharpened images are given to the input of standard AHE, their performance is improved. Enhancement Measure and structural similarity measure are used to analyze the performance of the proposed method. Though the images are enhanced, the quality of the image is not degraded. As a specific application, the enhanced images are used to detect the microcalcification and spiculated masses in mammograms.
机译:由于难以检测X线乳房X线照片的低对比度和噪点性质,必须对其进行增强以获得清晰和良好的视野。尽管使用锐化技术(ST)来增强对比度,但它会在增强过程中引入噪声,并且不包括各向异性功能。本文提出了一种ST,它使用了从方向波变换(DT)获得的多尺度线性和各向异性几何特征。结合多方向几何信息的新方法具有多种可调参数,并通过多尺度特征改进了噪声控制。使用偏斜和细长方向基函数的DT不仅捕获点奇点,而且将它们链接为线性结构。将拟议的DT ST的性能与非线性不清晰屏蔽(NLUSM)进行了比较。将基于DT和LoG的锐化图像提供给标准AHE的输入时,它们的性能得到了改善。增强措施和结构相似性措施用于分析该方法的性能。尽管图像得到了增强,但图像质量不会降低。作为特定的应用,增强的图像用于检测乳房X线照片中的微钙化和弥散性肿块。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号