首页> 外文期刊>Biomedical signal processing and control >Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM
【24h】

Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM

机译:使用HHT和SVM根据脑电信号的时频图像对癫痫发作进行分类

获取原文
获取原文并翻译 | 示例

摘要

The detection of seizure activity in electroencephalogram (EEG) signals is crucial for the classification of epileptic seizures. However, epileptic seizures occur irregularly and unpredictably, automatic seizure detection in EEG recordings is highly required. In this work, we present a new technique for seizure classification of EEG signals using Hilbert-Huang transform (HHT) and support vector machine (SVM). In our method, the HHT based time-frequency representation (TFR) has been considered as time-frequency image (TFI), the segmentation of TFI has been implemented based on the frequency-bands of the rhythms of EEG signals, the histogram of grayscale sub-images has been represented. Statistical features such as mean, variance, skewness and kurtosis of pixel intensity in the histogram have been extracted. The SVM with radial basis function (RBF) kernel has been employed for classification of seizure and nonseizure EEG signals. The classification accuracy and receiver operating characteristics (ROC) curve have been used for evaluating the performance of the classifier. Experimental results show that the best average classification accuracy of this algorithm can reach 99.125% with the theta rhythm of EEG signals.
机译:脑电图(EEG)信号中癫痫发作活动的检测对于癫痫性癫痫发作的分类至关重要。然而,癫痫发作不规则且不可预测地发生,因此非常需要EEG记录中的自动癫痫发作检测。在这项工作中,我们提出了一种使用希尔伯特-黄变换(HHT)和支持向量机(SVM)对脑电信号进行癫痫发作分类的新技术。在我们的方法中,将基于HHT的时频表示(TFR)视为时频图像(TFI),已基于EEG信号的节奏频带,灰度直方图实现了TFI的分割子图像已被表示。提取了直方图中像素强度的均值,方差,偏度和峰度等统计特征。具有径向基函数(RBF)核的SVM已被用于癫痫发作和非癫痫发作EEG信号的分类。分类精度和接收器工作特性(ROC)曲线已用于评估分类器的性能。实验结果表明,以脑电信号的θ节律为基础,该算法的最佳平均分类精度可以达到99.125%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号