首页> 外文期刊>Biomedical signal processing and control >Sleep staging from the EEG signal using multi-domain feature extraction
【24h】

Sleep staging from the EEG signal using multi-domain feature extraction

机译:使用多域特征提取从EEG信号进行睡眠分级

获取原文
获取原文并翻译 | 示例

摘要

The analysis of the electroencephalogram (EEG) can yield much useful information about brain function, including indications of sleep stage. During the process of EEG analysis, feature extraction is one of the most critical technical aspect. Traditional EEG feature extraction methods are mainly based on single domain analysis. However, due to the highly non-stationary and nonlinear characteristics of the EEG, it is difficult to extract comprehensive information only from single domain analysis. In the present study, a novel feature extraction method was proposed based on the multi-domain analysis of the EEG. Fifteen characteristic parameters were extracted based on the multifractal detrended fluctuation analysis (MF-DFA), visibility graph algorithm (VGA), frequency analysis and nonlinear analysis. Ten optimal parameters of the fifteen parameters were selected by the genetic algorithm (GA). Then the Least Squares-Support Vector Machines (LS-SVM) were used to classify the sleep states. The cross validation results demonstrated that multi-domain feature extraction method can obtain more useful information in the EEG signal. Compared to the frequency domain parameters, nonlinear parameters and time domain parameters, the predictive accuracy of sleep staging classification with optimal multi-domain parameters improved 11.08%, 10.76% and 6.40% respectively. (C) 2016 Elsevier Ltd. All rights reserved.
机译:脑电图(EEG)的分析可以提供有关脑功能的许多有用信息,包括睡眠阶段的指征。在EEG分析过程中,特征提取是最关键的技术方面之一。传统的脑电特征提取方法主要基于单域分析。然而,由于脑电图的高度非平稳性和非线性特征,仅从单域分析中提取全面信息是困难的。在本研究中,基于脑电图的多域分析提出了一种新颖的特征提取方法。基于多重分形趋势波动分析(MF-DFA),可见度图算法(VGA),频率分析和非线性分析,提取了十五个特征参数。通过遗传算法(GA)选择了15个参数中的10个最佳参数。然后使用最小二乘支持向量机(LS-SVM)对睡眠状态进行分类。交叉验证结果表明,多域特征提取方法可以在脑电信号中获得更多有用的信息。与频域参数,非线性参数和时域参数相比,具有最佳多域参数的睡眠分期分类的预测准确性分别提高了11.08%,10.76%和6.40%。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Biomedical signal processing and control》 |2016年第9期|86-97|共12页
  • 作者单位

    Harbin Inst Technol, Sch Elect Engn & Automat, Harbin 150001, Peoples R China;

    Harbin Inst Technol, Sch Elect Engn & Automat, Harbin 150001, Peoples R China;

    Harbin Inst Technol, Sch Elect Engn & Automat, Harbin 150001, Peoples R China;

    Harbin Inst Technol, Sch Elect Engn & Automat, Harbin 150001, Peoples R China|Oxford BioHorizons Ltd, Oxford, England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    EEG; MF-DFA; VGA; LS-SVM;

    机译:脑电图;MF-DFA;VGA;LS-SVM;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号