首页> 外文期刊>Biomedical signal processing and control >Identifying transient patterns of in vivo muscle behaviors during isometric contraction by local polynomial regression
【24h】

Identifying transient patterns of in vivo muscle behaviors during isometric contraction by local polynomial regression

机译:通过局部多项式回归确定等轴测收缩期间体内肌肉行为的瞬时模式

获取原文
获取原文并翻译 | 示例

摘要

Polynomial regression is the most common method to estimate the relationship between muscle signals and torque during muscle contraction, but it is not capable of characterizing important transient patterns in the signal-torque relationship that only exist during short bursts of torque but may convey detailed information of muscle behavior. In this study, we proposed an integrated data analysis approach based on local polynomial regression (LPR) to identify transient patterns in the signal-torque relationship. For each subject, the LPR method can represent electromyography (EMG), mechanomyography (MMG) and ultrasonography (US) features as nonlinear functions of torque and can further estimate the derivatives of these signal-torque nonlinear functions. Further, a number of break points can be detected from the derivatives of the signal-torque relationships at the group level, and they can segment the signal-torque relationships into several stages, where multimodal features change with torque in different dynamic manners. Eight subjects performed isometric ramp contraction of knee up to 90% of the maximal voluntary contraction (MVC). EMG, MMG and US were simultaneously recorded from the rectus femoris muscle. Results showed that, for each feature, the whole torque range were clearly segmented into several distinct stages by the proposed method and the feature-torque relationship could be approximately described by a piecewise linear function with different slopes at different stages. A critical break-point of 20% MVC was detected during the isometric contraction for all muscle signals. As compared with the conventional regression methods, the proposed LPR-based data analysis approach can effectively identify stage-dependent transient patterns in the feature-torque relationships, providing deeper insights into the motor unit activation strategy. (C) 2015 Elsevier Ltd. All rights reserved.
机译:多项式回归是估算肌肉收缩过程中肌肉信号与扭矩之间关系的最常用方法,但是它无法表征仅在短暂的扭矩爆发期间就存在的信号-扭矩关系中的重要瞬态模式,但可能会传递肌肉行为。在这项研究中,我们提出了一种基于局部多项式回归(LPR)的集成数据分析方法,以识别信号-扭矩关系中的瞬态模式。对于每个对象,LPR方法可以将肌电图(EMG),机械功法(MMG)和超声检查(US)特征表示为扭矩的非线性函数,并且可以进一步估计这些信号-扭矩非线性函数的导数。此外,可以从组级别的信号-扭矩关系的导数中检测到多个断点,并且它们可以将信号-扭矩关系划分为几个阶段,其中多峰特征以不同的动态方式随扭矩而变化。八名受试者进行了膝盖的等距坡道收缩,最多达到最大自愿收缩(MVC)的90%。从股直肌同时记录EMG,MMG和US。结果表明,对于每个特征,所提出的方法将整个转矩范围清楚地划分为几个不同的阶段,并且特征-转矩关系可以通过分段线性函数近似地描述,分段线性函数在不同阶段具有不同的斜率。在所有肌肉信号的等距收缩过程中,检测到20%MVC的临界断点。与传统的回归方法相比,所提出的基于LPR的数据分析方法可以有效地识别特征-扭矩关系中与阶段有关的瞬态模式,从而提供对运动单元激活策略的更深入了解。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Biomedical signal processing and control》 |2016年第2期|93-102|共10页
  • 作者单位

    Shenzhen Univ, Sch Med, Natl Reg Key Technol Engn Lab Med Ultrasound, Guangdong Key Lab Biomed Measurements & Ultrasoun, Shenzhen, Peoples R China;

    Shenzhen Univ, Sch Med, Natl Reg Key Technol Engn Lab Med Ultrasound, Guangdong Key Lab Biomed Measurements & Ultrasoun, Shenzhen, Peoples R China;

    Shenzhen Univ, Sch Med, Natl Reg Key Technol Engn Lab Med Ultrasound, Guangdong Key Lab Biomed Measurements & Ultrasoun, Shenzhen, Peoples R China;

    Shenzhen Univ, Sch Med, Natl Reg Key Technol Engn Lab Med Ultrasound, Guangdong Key Lab Biomed Measurements & Ultrasoun, Shenzhen, Peoples R China;

    Shenzhen Univ, Sch Med, Natl Reg Key Technol Engn Lab Med Ultrasound, Guangdong Key Lab Biomed Measurements & Ultrasoun, Shenzhen, Peoples R China;

    Hong Kong Polytech Univ, Interdisciplinary Div Biomed Engn, Kowloon, Hong Kong, Peoples R China;

    Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 639798, Singapore|Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electromyography; Mechanomyography; Ultrasonography; Isometric contraction; Local polynomial regression; Transient muscle behavior;

    机译:肌电图;肌电图;超声检查;等轴测收缩;局部多项式回归;瞬时肌肉行为;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号