首页> 外文期刊>Biomedical signal processing and control >An efficient and fast GPU-based algorithm for visualizing large volume of 4D data from virtual heart simulations
【24h】

An efficient and fast GPU-based algorithm for visualizing large volume of 4D data from virtual heart simulations

机译:一种基于GPU的高效,快速算法,可通过虚拟心脏仿真可视化大量4D数据

获取原文
获取原文并翻译 | 示例

摘要

An efficient and fast visualization algorithm is important for analyzing a large volume of physical data conformed to 3D anatomical geometry that evolves with time (i.e., 4D data). Such 4D visualization helps to study the evolution of cardiac excitation waves in normal and pathological conditions and understand the mechanisms underlying the genesis and maintenance of cardiac arrhythmias. However, due to limited hardware resources, so far we have not found any report about real time methods to visualize a large volume of 4D data of virtual heart simulation data. In this study, we propose a GPU-based method to address this issue, our method consists of two phases, and the first is the data compression phase, implementing an improved hierarchical vector quantization method with N-nearest neighbor searching strategy in GPU, which reduces compression time dramatically. In the second phase, the compressed data is directly decompressed in GPU and rendered with ray casting method. What is more, an adaptive sampling strategy and empty space skipping methods are further used to accelerate the rendering process, resulting in a high rendering speed. The proposed method has been evaluated for the visualization of large time-varying cardiac electrophysiological simulation data by using our simulation datasets and has achieved promising results. For about 27G bytes dataset, our method can render the data with above 35 frames per second (FPS), which exceeds the real-time frame rate for interactive observing. It significantly decreases the time in the compression phase and achieves real time rendering speed with high image quality in the visualization phase, which demonstrates the accuracy and efficiency of our method. (C) 2017 Elsevier Ltd. All rights reserved.
机译:高效且快速的可视化算法对于分析符合随时间变化的3D解剖学几何结构的大量物理数据(即4D数据)非常重要。这种4D可视化有助于研究正常和病理条件下心脏激发波的演变,并了解心脏心律不齐的发生和维持的潜在机制。然而,由于有限的硬件资源,到目前为止,我们还没有发现任何有关实时方法来可视化大量虚拟心脏模拟数据的4D数据的报告。在这项研究中,我们提出了一种基于GPU的方法来解决此问题,我们的方法包括两个阶段,第一个阶段是数据压缩阶段,在GPU中使用N最近邻搜索策略实现了改进的分层向量量化方法,大大减少了压缩时间。在第二阶段,将压缩后的数据直接在GPU中解压缩,并使用射线投射方法进行渲染。此外,还采用了自适应采样策略和空白空间跳过方法来加速渲染过程,从而提高了渲染速度。通过使用我们的仿真数据集,对所提出的方法进行了可视化,以评估大时变的心脏电生理仿真数据,并取得了可喜的结果。对于约27G字节的数据集,我们的方法可以以高于35帧/秒(FPS)的速度呈现数据,这超出了交互式观察的实时帧速率。它显着减少了压缩阶段的时间,并在可视化阶段实现了具有高质量图像的实时渲染速度,这证明了我们方法的准确性和效率。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号