首页> 外文期刊>Biomedical signal processing and control >Modified localized multiplicative graph cuts based active contour model for object segmentation based on dynamic narrow band scheme
【24h】

Modified localized multiplicative graph cuts based active contour model for object segmentation based on dynamic narrow band scheme

机译:基于动态窄带方案的基于局部修正乘法图割的主动轮廓分割模型

获取原文
获取原文并翻译 | 示例

摘要

Localized multiplicative graph cuts based active contour model (LM-GCACM) has been widely utilized in object segmentation. However, the curve evolution of existing LM-GCACMs is based on static narrow band scheme generally, which is inconvenient in object segmentation because it requires the initialized curve be close to object boundary, and the narrow band is difficult to be determined. In this paper, a modified LM-GCACM based on dynamic narrow band is proposed to improve static narrow band. The dynamic narrow band allows the initialized curve to be any size or shape as long as it is inside object, and the narrow band can be built between the evolving curve and image bounding box. There are three contributions made to achieve dynamic narrow band. Firstly, the multiplicative region term is modified more suitable for segmentation. Secondly, a contrast constraint term is introduced to help evolving curve to go over false edges in the curve inflation evolution process. Thirdly, a self-constraint term is proposed to reduce the influence of surrounding clutter around object in the background, and guarantee segmentation stop on object boundary. Experiments on synthetic and medical images demonstrate the advantages of the proposed method. (C) 2016 Elsevier Ltd. All rights reserved.
机译:基于局部可乘图割的主动轮廓模型(LM-GCACM)已在对象分割中得到广泛应用。然而,现有的LM-GCACM的曲线演化通常是基于静态窄带方案,这在对象分割中很不方便,因为它需要初始化的曲线靠近对象边界,并且难以确定窄带。本文提出了一种基于动态窄带的改进LM-GCACM,以改善静态窄带。动态窄带允许初始化的曲线具有任意大小或形状,只要它在对象内部即可,并且可以在演变曲线和图像边界框之间建立窄带。为实现动态窄带做出了三点贡献。首先,将乘法区域项修改为更适合分割。其次,引入了对比度约束项,以帮助曲线在曲线膨胀演变过程中越过假边缘。第三,提出了一种自约束项,以减少背景周围物体周围杂波的影响,并保证分割停止在物体边界上。在合成图像和医学图像上的实验证明了该方法的优点。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Biomedical signal processing and control》 |2017年第3期|119-131|共13页
  • 作者单位

    Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Peoples R China;

    Qingdao Univ, Coll Med, Affiliated Yantai Yuhuangding Hosp, Dept Med Oncol, Yantai 264000, Peoples R China|Qingdao Univ, Coll Med, Affiliated Yantai Yuhuangding Hosp, Dept Radiol, Yantai 264000, Peoples R China;

    Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Peoples R China;

    Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Peoples R China;

    Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Peoples R China;

    Shandong Univ Weihai, Sch Math & Stat, Weihai 264209, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Active contour model; Graph cuts; Image segmentation;

    机译:活动轮廓模型;图形切割;图像分割;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号