首页> 外文期刊>Biomedical signal processing and control >DSP-based arrhythmia classification using wavelet transform and probabilistic neural network
【24h】

DSP-based arrhythmia classification using wavelet transform and probabilistic neural network

机译:小波变换和概率神经网络的基于DSP的心律失常分类

获取原文
获取原文并翻译 | 示例

摘要

A large part of the biomedical research spectrum is dedicated to develop electrocardiogram (ECG) signal processing techniques to contribute to early diagnosis. However, it is common to find that ECG analysis methods reported are confined to off-line PC host operation. The authors present an arrhythmia classification method implemented on a Digital Signal Processing (DSP) platform intended for on-line, real-time ambulatory operation to classify eight heartbeat conditions: normal sinus rhythm (N), auricular fibrillation (AF), premature atrial contraction (PAC), left bundle branch block (LBBB), right bundle branch block (RBBB), premature ventricular contraction (PVC), sinoauricular heart block (SHB) and supraventricular tachycardia (SVT). The algorithm uses a wavelet transform process based on quadratic wavelets for identifying individual ECG waves and obtain a fiducial marker array. Classification is conducted by means of a Probabilistic Neural Network. The algorithm is tested with 17 ECG records obtained from the PhysioNet repository. The proposed classification procedure was tested initially on MATLAB and the results where compared with the equivalent analogue data fed to a DSP-based ECG data acquisition prototype through an arbitrary waveform generator. The results derived from confusion matrix tests yielded on-line classification accuracy of 92.69% (AF), 97.15% (N), 76.82% (PAC), 91.06% (LBBB), 87.5% (RBBB), 71.04% (PVC), 91.94% (SHB) and 95.45% (SVT), overall classification rate of 92.746% and 100% agreement between the MATLAB and on-line DSP implementations. The results suggest that the method and prototype presented may be suitable for being implemented on wearable sensing applications auxiliary for on-line, real-time diagnosis. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
机译:生物医学研究领域的很大一部分致力于开发心电图(ECG)信号处理技术,以有助于早期诊断。但是,通常发现报告的ECG分析方法仅限于离线PC主机操作。作者提出了一种在数字信号处理(DSP)平台上实施的心律失常分类方法,该方法旨在进行在线实时非卧床操作,以对八种心跳状况进行分类:正常窦性心律(N),耳房颤动(AF),房性早搏(PAC),左束支传导阻滞(LBBB),右束支传导阻滞(RBBB),室性早搏(PVC),窦房性心脏传导阻滞(SHB)和室上性心动过速(SVT)。该算法使用基于二次小波的小波变换过程来识别单个ECG波并获得基准标记阵列。分类是通过概率神经网络进行的。使用从PhysioNet存储库获得的17条ECG记录对算法进行了测试。最初在MATLAB上测试了建议的分类程序,并将结果与​​通过任意波形发生器馈入基于DSP的ECG数据采集原型的等效模拟数据进行了比较。混淆矩阵测试得出的结果在线分类准确度为92.69%(AF),97.15%(N),76.82%(PAC),91.06%(LBBB),87.5%(RBBB),71.04%(PVC), MATLAB和在线DSP实现之间的总分类率为91.94%(SHB)和95.45%(SVT),总体分类率为92.746%,并且100%达成一致。结果表明,所提出的方法和原型可能适合在可辅助进行在线实时诊断的可穿戴传感应用上实施。 (C)2016作者。由Elsevier Ltd.发行。这是CC BY-NC-ND许可下的开放获取文章。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号