首页> 外文期刊>Biomedical Microdevices >A computational and experimental study inside microfluidic systems: the role of shear stress and flow recirculation in cell docking
【24h】

A computational and experimental study inside microfluidic systems: the role of shear stress and flow recirculation in cell docking

机译:微流体系统内部的计算和实验研究:剪切应力和流动再循环在细胞对接中的作用

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, microfluidic devices containing microwells that enabled cell docking were investigated. We theoretically assessed the effect of geometry on recirculation areas and wall shear stress patterns within microwells and studied the relationship between the computational predictions and experimental cell docking. We used microchannels with 150 μm diameter microwells that had either 20 or 80 μm thickness. Flow within 80 μm deep microwells was subject to extensive recirculation areas and low shear stresses (<0.5 mPa) near the well base; whilst these were only presented within arn10 μm peripheral ring in 20 μm thick microwells. We also experimentally demonstrated that cell docking was significantly higher (p<0.01) in 80 μm thick microwells as compared to 20 μm thick microwells. Finally, a computational tool which correlated physical and geometrical parameters of microwells with their fluid dynamic environment was developed and was also experimentally confirmed.
机译:在本文中,研究了包含使细胞对接的微孔的微流体装置。我们从理论上评估了几何形状对微孔内再循环区域和壁切应力模式的影响,并研究了计算预测与实验细胞对接之间的关系。我们使用直径为150μm的微孔的微通道,其厚度为20或80μm。在深80μm的微孔内的流动在井底附近受到广泛的再循环区域和低剪切应力(<0.5 mPa)的影响;而这些仅在20μm厚的微孔中的arn10μm外围环内显示。我们还通过实验证明,与20μm厚度的微孔相比,在80μm厚度的微孔中细胞对接显着更高(p <0.01)。最后,开发了一种将微孔的物理和几何参数与其流体动力学环境相关联的计算工具,并已通过实验证实。

著录项

  • 来源
    《Biomedical Microdevices》 |2010年第4期|P.619-626|共8页
  • 作者单位

    Laboratory of Biological Structure Mechanics,Department of Structural Engineering, Politecnico di Milano,Milan, Italy IRCCS Istituto Ortopedico Galeazzi,Milan, Italy;

    IRCCS Istituto Ortopedico Galeazzi,Milan, Italy;

    Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School,Cambridge, MA 02139, USA Institute of Biomaterials and Biomedical Engineering (IBBME),University of Toronto,Toronto, ON, Canada;

    Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School,Cambridge, MA 02139, USA Department of Bionano Engineering, Hanyang University,Ansan 426-791, Korea Harvard-MIT Division of Health Sciences and Technology,Massachusetts Institute of Technology,Cambridge, MA 02139, USA;

    Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School,Cambridge, MA 02139, USA Harvard-MIT Division of Health Sciences and Technology,Massachusetts Institute of Technology,Cambridge, MA 02139, USA;

    Laboratory of Biological Structure Mechanics,Department of Structural Engineering, Politecnico di Milano,Milan, Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    microfluidic device; computational fluid dynamic; cell docking; shear stress;

    机译:微流体装置计算流体动力学细胞对接;剪应力;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号