首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Classification of action potentials in multi-unit intrafascicular recordings using neural network pattern-recognition techniques
【24h】

Classification of action potentials in multi-unit intrafascicular recordings using neural network pattern-recognition techniques

机译:使用神经网络模式识别技术对多单元束内录音中动作电位的分类

获取原文
获取原文并翻译 | 示例

摘要

Neural network pattern-recognition techniques were applied to the problem of identifying the sources of action potentials in multi-unit neural recordings made from intrafascicular electrodes implanted in cats. The network was a three-layer connectionist machine that used digitized action potentials as input. On average, the network was able to reliably separate 6 or 7 units per recording. As the number of units present in the recording increased beyond this limit, the number separable by the network remained roughly constant. The results demonstrate the utility of neural networks for classifying neural activity in multi-unit recordings.
机译:神经网络模式识别技术被应用于在植入猫的束内电极制成的多单位神经记录中识别动作电位来源的问题。该网络是一个三层的连接机器,使用数字化的动作电位作为输入。平均而言,该网络能够可靠地将每个记录分隔6或7个单元。随着记录中存在的单位数量增加到超过此限制,网络可分离的数量保持大致恒定。结果证明了神经网络在多单元记录中对神经活动进行分类的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号