首页> 外文期刊>IEEE Transactions on Biomedical Engineering >An automatic diagnostic system for CT liver image classification
【24h】

An automatic diagnostic system for CT liver image classification

机译:CT肝脏图像分类自动诊断系统

获取原文
获取原文并翻译 | 示例

摘要

Computed tomography (CT) images have been widely used for liver disease diagnosis. Designing and developing computer-assisted image processing techniques to help doctors improve their diagnosis has received considerable interests over the past years. In this paper, a CT liver image diagnostic classification system is presented which will automatically find, extract the CT liver boundary and further classify liver diseases. The system comprises a detect-before-extract (DBE) system which automatically finds the liver boundary and a neural network liver classifier which uses specially designed feature descriptors to distinguish normal liver, two types of liver tumors, hepatoma and hemageoma. The DBE system applies the concept of the normalized fractional Brownian motion model to find an initial liver boundary and then uses a deformable contour model to precisely delineate the liver boundary. The neural network is included to classify liver tumors into hepatoma and hemageoma. It is implemented by a modified probabilistic neural network (PNN) [MPNN] in conjunction with feature descriptors which are generated by fractal feature information and the gray-level co-occurrence matrix. The proposed system was evaluated by 30 liver cases and shown to be efficient and very effective.
机译:计算机断层扫描(CT)图像已被广泛用于肝病诊断。在过去的几年中,设计和开发计算机辅助图像处理技术来帮助医生改善诊断水平已经引起了人们的极大兴趣。本文提出了一种CT肝脏图像诊断分类系统,该系统将自动查找,提取CT肝脏边界并进一步对肝脏疾病进行分类。该系统包括提取前检测(DBE)系统和神经网络肝脏分类器,该系统可自动找到肝脏边界,该神经分类器使用经过特殊设计的特征描述符来区分正常肝脏,两种类型的肝肿瘤,肝癌和血栓瘤。 DBE系统应用归一化分数布朗运动模型的概念来查找初始肝脏边界,然后使用可变形轮廓模型精确描绘肝脏边界。包含了神经网络,可将肝肿瘤分为肝癌和血细胞瘤。它是通过改进的概率神经网络(PNN)[MPNN]结合由分形特征信息和灰度共现矩阵生成的特征描述符来实现的。拟议的系统由30例肝脏病例进行了评估,并证明是有效且非常有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号