首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination
【24h】

Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination

机译:用于视网膜蒙太奇合成,映射和实时位置确定的图像处理算法

获取原文
获取原文并翻译 | 示例

摘要

Although laser retinal surgery is the best available treatment for choroidal neovascularization, the current procedure has a low success rate (50%). Challenges, such as motion-compensated beam steering, ensuring complete coverage and minimizing incidental photodamage, can be overcome with improved instrumentation. This paper presents core image processing algorithms for (1) rapid identification of branching and crossover points of the retinal vasculature; (2) automatic montaging of video retinal angiograms; (3) real-time location determination and tracking using a combination of feature-tagged point-matching and dynamic-pixel templates. These algorithms tradeoff conflicting needs for accuracy, robustness to image variations (due to movements and the difficulty of providing steady illumination) and noise, and operational speed in the context of available hardware. The algorithm for locating vasculature landmarks performed robustly at a speed of 16-30 video image frames/s depending upon the field on a Silicon Graphics workstation. The montaging algorithm performed at a speed of 1.6-4 s for merging 5-12 frames. The tracking algorithm was validated by manually locating six landmark points on an image sequence with 180 frames, demonstrating a mean-squared error of 1.35 pixels. It successfully detected and rejected instances when the image dimmed, faded, lost contrast, or lost focus.
机译:尽管激光视网膜手术是治疗脉络膜新生血管的最佳方法,但目前的手术成功率较低(50%)。改进的仪器可以克服诸如运动补偿光束转向,确保完全覆盖并最大程度减少偶然光损伤之类的挑战。本文提出了用于以下方面的核心图像处理算法:(1)快速识别视网膜血管的分支和交叉点; (2)自动剪辑视频视网膜血管造影照片; (3)使用特征标记的点匹配和动态像素模板的组合进行实时位置确定和跟踪。这些算法在精度,图像变化的鲁棒性(由于运动和提供稳定照明的困难)和噪声以及在可用硬件的情况下的运行速度之间进行权衡。用于定位脉管标志物的算法会根据Silicon Graphics工作站上的字段以16-30个视频图像帧/秒的速度稳健地执行。蒙太奇算法以1.6-4 s的速度执行以合并5-12帧。通过手动定位具有180帧的图像序列上的六个界标点来验证跟踪算法,该算法显示出1.35像素的均方误差。当图像变暗,变暗,失去对比度或失去焦点时,它成功检测并拒绝了实例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号