首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Human ECoG analysis during speech perception using matching pursuit: a comparison between stochastic and dyadic dictionaries
【24h】

Human ECoG analysis during speech perception using matching pursuit: a comparison between stochastic and dyadic dictionaries

机译:使用匹配追踪的语音感知过程中的人类ECoG分析:随机字典与二进字典的比较

获取原文
获取原文并翻译 | 示例

摘要

We use the matching pursuit (MP) algorithm to detect induced gamma activity in human EEG during speech perception. We show that the MP algorithm is particularly useful for detecting small power changes at high gamma frequencies (<70 Hz). We also compare the performance of the MP using a stochastic versus a dyadic dictionary and show that despite the frequency bias the time-frequency power plot (averaged over 100 trials) generated by the dyadic MP is almost identical (<98.5%) to the one generated by the stochastic MP. However, the dyadic MP is computationally much faster than the stochastic MP.
机译:我们使用匹配追踪(MP)算法来检测语音感知过程中人类脑电图诱导的伽玛活动。我们证明了MP算法对于检测高伽马频率(<70 Hz)的小功率变化特别有用。我们还比较了使用随机字典和二进字典的MP的性能,结果表明,尽管存在频率偏差,二进MP生成的时频功率图(平均100多次试验)几乎与之相同(<98.5%)由随机MP产生。但是,二进位MP在计算上比随机MP快得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号