首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Automated search for arthritic patterns in infrared spectra of synovial fluid using adaptive wavelets and fuzzy C-Means analysis
【24h】

Automated search for arthritic patterns in infrared spectra of synovial fluid using adaptive wavelets and fuzzy C-Means analysis

机译:使用自适应小波和模糊C均值分析自动搜索滑液红外光谱中的关节炎模式

获取原文
获取原文并翻译 | 示例

摘要

Analysis of synovial fluid by infrared (IR) clinical chemistry requires expert interpretation and is susceptible to subjective error. The application of automated pattern recognition (APR) may enhance the utility of IR analysis. Here, we describe an APR method based on the fuzzy C-means cluster adaptive wavelet (FCMC-AW) algorithm, which consists of two parts: one is a FCMC using the features from an M-band feature extractor adopting the adaptive wavelet algorithm and the second is a Bayesian classifier using the membership matrix generated by the FCMC. AFCMC-cross-validated quadratic probability measure (FCMC-CVQPM) criterion is used under the assumption that the class probability density is equal to the value of the membership matrix. Therefore, both values of posterior probabilities and selection criterion M/sub FQ/ can be obtained through the membership matrix. The distinctive advantage of this method is that it provides not only the 'hard' classification of a new pattern, but also the confidence of this classification,which is reflected by the membership matrix.
机译:通过红外(IR)临床化学分析滑液需要专家解释,并且容易受到主观误差的影响。自动模式识别(APR)的应用可以增强IR分析的实用性。在这里,我们介绍一种基于模糊C均值聚类自适应小波(FCMC-AW)算法的APR方法,该方法包括两部分:一个是使用M波段特征提取器中的特征采用自适应小波算法的FCMC;第二个是使用FCMC生成的隶属度矩阵的贝叶斯分类器。在类概率密度等于隶属矩阵值的假设下,使用AFCMC交叉验证的二次概率测度(FCMC-CVQPM)标准。因此,可以通过隶属度矩阵获得后验概率值和选择标准M / sub FQ /。这种方法的独特优势在于,它不仅提供了新模式的“硬”分类,而且还提供了这种分类的置信度,这由成员矩阵反映出来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号