...
首页> 外文期刊>Biomedical Engineering, IEEE Transactions on >Multidimensional Ground Reaction Forces and Moments From Wearable Sensor Accelerations via Deep Learning
【24h】

Multidimensional Ground Reaction Forces and Moments From Wearable Sensor Accelerations via Deep Learning

机译:通过深度学习从可穿戴传感器加速度的多维地面反作用力和矩

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Objective: Monitoring athlete internal workload exposure, including prevention of catastrophic non-contact knee injuries, relies on the existence of a custom early-warning detection system. This system must be able to estimate accurate, reliable, and valid musculoskeletal joint loads, for sporting maneuvers in near real-time and during match play. However, current methods are constrained to laboratory instrumentation, are labor and cost intensive, and require highly trained specialist knowledge, thereby limiting their ecological validity and wider deployment. An informative next step towards this goal would be a new method to obtain ground kinetics in the field. Methods: Here we show that kinematic data obtained from wearable sensor accelerometers, in lieu of embedded force platforms, can leverage recent supervised learning techniques to predict near real-time multidimensional ground reaction forces and moments (GRF/M). Competing convolutional neural network (CNN) deep learning models were trained using laboratory-derived stance phase GRF/M data and simulated sensor accelerations for running and sidestepping maneuvers derived from nearly half a million legacy motion trials. Then, predictions were made from each model driven by five sensor accelerations recorded during independent inter-laboratory data capture sessions. Results: The proposed deep learning workbench achieved correlations to ground truth, by maximum discrete GRF component, of vertical $F_z$ 0.97, anterior $F_y$ 0.96 (both running), and lateral $F_x$ 0.87 (sidestepping), with the strongest mean recorded across GRF components 0.89, and for GRM 0.65 (both sidestepping). Conclusion: These best-case correlations indicate the plausibility of the approach although the range of results was disappointing. The goal to accurately estimate near real-time on-field GRF/M will be improved by the lessons learned in this study. Significance: Coaching, medical, and allied health staff could ultimately use this technology to monitor a range of joint loading indicators during game play, with the aim to minimize the occurrence of non-contact injuries in elite and community-level sports.
机译:<斜体XMLNS:mml =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”>目标:监控运动员内部工作量曝光,包括预防灾难性的非接触膝关节伤害,依赖于存在定制预警检测系统的存在。该系统必须能够估算准确,可靠和有效的肌肉骨骼接头载荷,用于在近实时和比赛中的运动中运动。然而,目前的方法受到实验室仪器的限制,劳动力和成本密集,需要高度训练有素的专业知识,从而限制了他们的生态有效性和更广泛的部署。朝着这一目标的信息下一步是一种在现场获得地面动力学的新方法。 <斜体xmlns:mml =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”>方法:在这里我们表明,从可穿戴式传感器加速度计获得的运动数据,代替嵌入式力平台,可以利用最近监督的学习技术来预测实时多维地面反作用力和时刻(GRF / M)。竞争卷积神经网络(CNN)深度学习模型使用实验室衍生的姿势阶段GRF / M数据进行培训,并且模拟传感器加速度用于运行和逃离近百万分之一的遗产试验的近百万分之一的遗产。然后,通过在独立的实验室数据捕获会话期间记录的五个传感器加速度驱动的每个模型来进行预测。 结果:提出的深度学习工作台通过最大离散GRF组件,垂直<内联XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http: //www.w3.org/1999/xlink"> $ F_Z $ 0.97,前<内联 - 公式XMLNS:MML =“ http://www.w3.org/1998/math/mathml“xmlns:xlink =”http://www.w3.org/1999/xlink“> $ f_y $ < / tex-math> 0.96(运行)和横向 $ f_x $ 0.87(sideestepping),录制最强烈的平均值GRF组件0.89,以及GRM 0.65(别回任)。 结论:这些最佳相关性相关性表明这种方法的合理性,尽管结果范围令人失望。通过本研究中学到的经验教训,将准确估计附近估计的目标。 <斜体XMLNS:mml =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”>意义:教练,医疗和盟军卫生工作人员最终可能使用这项技术来监测游戏过程中的一系列联合装载指标,其目的是最大限度地减少精英和社区级别体育中的非接触伤害的发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号