首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Blind Source Separation on Non-Contact Heartbeat Detection by Non-Negative Matrix Factorization Algorithms
【24h】

Blind Source Separation on Non-Contact Heartbeat Detection by Non-Negative Matrix Factorization Algorithms

机译:非负矩阵分解算法的非接触心跳检测盲源分离

获取原文
获取原文并翻译 | 示例

摘要

In non-contact heart rate (HR) monitoring via Doppler radar, the disturbance from respiration and/or body motion is treated as a key problem on the estimation of HR. This paper proposes a blind source separation (BSS) approach to mitigate the noise effect in the received radar signal, and incorporates the sparse spectrum reconstruction to achieve a high-resolution of heartbeat spectrum. The proposed BSS decomposes the spectrogram of mixture signal into original sources, including heartbeat, using non-negative matrix factorization (NMF) algorithms, through learning the complete basis spectra (BS) by a hierarchical clustering. In particular, to exploit the temporal sparsity of heartbeat component, two variants of NMF algorithms with sparseness constraints are applied as well, namely sparse NMF and weighted sparse NMF. Compared with usual BSS, our proposed BSS has three advantages: 1) clustering-induced unsupervised manner; 2) compact demixing architecture; and 3) merely requiring single-channel input data. In addition, the HR estimation method using our proposal delivers more satisfactory precision and robustness over other existing methods, which is demonstrated through the measurements of distinguishing people& x0027;s activities, gaining both smallest absolute errors of HR estimation for sitting still and typewriting.
机译:在通过多普勒雷达的非接触心率(HR)监测中,呼吸和/或身体运动的干扰被视为HR估计的关键问题。本文提出了一种盲源分离(BSS)方法来减轻所接收的雷达信号中的噪声效应,并结合了稀疏的频谱重建,以实现心跳谱的高分辨率。所提出的BSS将混合物信号的谱图分解为原始源,包括使用非负矩阵分子(NMF)算法,通过分层聚类学习完整的基谱(BS)。特别地,为了利用心跳组分的时间稀疏性,施加了具有稀疏约束的NMF算法的两个变体,也稀疏NMF和加权稀疏NMF。与常规BSS相比,我们提出的BSS有三个优点:1)聚类诱导的无监督的方式; 2)紧凑脱模架构; 3)仅需要单通道输入数据。此外,使用我们的提案的HR估计方法通过其他现有方法提供更令人满意的精度和鲁棒性,这些方法通过区分人和X0027的活动来证明,获得静止和打字机的HR估计的最小绝对误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号