首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Identification of Multidimensional Regulatory Modules Through Multi-Graph Matching With Network Constraints
【24h】

Identification of Multidimensional Regulatory Modules Through Multi-Graph Matching With Network Constraints

机译:通过与网络约束的多图形匹配识别多维监管模块

获取原文
获取原文并翻译 | 示例

摘要

Objective: The accumulation of large amounts of multidimensional genomic data provides new opportunities to study multilevel biological regulatory associations. Identifying multidimensional regulatory modules (md-modules) from omics data is crucial to provide a comprehensive understanding of the regulatory mechanisms of biological systems. Methods: We develop a multi-graph matching with multiple network constraints (MGMMNC) model to identify the md-modules. The MGMMNC model aims to accurately capture highly relevant md-modules by considering the relationships intra- and inter-multidimensional omics data, including interactions within a network and cycle consistency information. The proposed technique adopts a novel graph-smoothing similarity measurement for the highly contaminated genetic data. Results: The superiority and effectiveness of MGMMNC have been demonstrated by comparative experiments with three state-of-the-art techniques using simulated and cervical cancer data. Conclusion: MGMMNC can accurately and efficiently identify the md-modules that are significantly enriched in gene ontology biological processes and in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Many different level molecules in the same md-module collaboratively regulate the same pathway. Moreover, the md-modules are capable of stratifying patients into subtypes with significant survival differences. Significance: The problem of identifying multidimensional regulatory modules from omics data is formulated as a multi-graph matching problem, and multiple network constraints and cycle consistency information are seamlessly integrated into the matching model.
机译:目的:大量多维基因组数据的积累为研究多级生物监管协会提供了新的机会。从OMICS数据识别来自OMICS数据的多维监管模块(MD模块)至关重要,以全面了解生物系统的监管机制。方法:我们开发了一种与多个网络约束(MGMMNC)模型的多图形匹配,以识别MD模块。 MGMMNC模型旨在通过考虑和多维互补的OMIC数据的关系,包括网络和周期一致性信息中的交互来准确地捕获高度相关的MD模块。所提出的技术采用了一种新的植物遗传数据的平滑平滑相似性测量。结果:使用模拟和宫颈癌数据的三种最新技术的比较实验证明了MgMMNC的优越性和有效性。结论:MgMMNC可以准确和有效地识别基因本体生物过程中显着富集的MD模块,并在京都基因和基因组(Kegg)途径中。同一MD模块中的许多不同的水平分子协同调节相同的途径。此外,MD-模块能够分层患者进入具有显着存活差异的亚型。意义:从OMICS数据识别来自OMICS数据的多维调节模块的问题被制定为多图匹配问题,并且多个网络约束和周期一致性信息无缝集成到匹配模型中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号