首页> 外文期刊>Biomedical and Health Informatics, IEEE Journal of >A Statistical Modeling Approach for Tumor-Type Identification in Surgical Neuropathology Using Tissue Mass Spectrometry Imaging
【24h】

A Statistical Modeling Approach for Tumor-Type Identification in Surgical Neuropathology Using Tissue Mass Spectrometry Imaging

机译:使用组织质谱成像的外科神经病理学中肿瘤类型识别的统计建模方法

获取原文
获取原文并翻译 | 示例

摘要

Current clinical practice involves classification of biopsied or resected tumor tissue based on a histopathological evaluation by a neuropathologist. In this paper, we propose a method for computer-aided histopathological evaluation using mass spectrometry imaging. Specifically, mass spectrometry imaging can be used to acquire the chemical composition of a tissue section and, hence, provides a framework to study the molecular composition of the sample while preserving the morphological features in the tissue. The proposed classification framework uses statistical modeling to identify the tumor type associated with a given sample. In addition, if the tumor type for a given tissue sample is unknown or there is a great degree of uncertainty associated with assigning the tumor type to one of the known tumor models, then the algorithm rejects the given sample without classification. Due to the modular nature of the proposed framework, new tumor models can be added without the need to retrain the algorithm on all existing tumor models.
机译:当前的临床实践涉及基于神经病理学家的组织病理学评估对活检或切除的肿瘤组织进行分类。在本文中,我们提出了一种使用质谱成像技术进行计算机辅助组织病理学评估的方法。具体而言,质谱成像可用于获取组织切片的化学组成,因此可提供一个框架,在保留组织形态特征的同时研究样品的分子组成。提议的分类框架使用统计建模来识别与给定样品相关的肿瘤类型。另外,如果给定组织样本的肿瘤类型未知或与将肿瘤类型分配给已知肿瘤模型之一相关的不确定性很大,则该算法将拒绝给定样本而不进行分类。由于所提出框架的模块化性质,可以添加新的肿瘤模型,而无需在所有现有的肿瘤模型上重新训练算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号