首页> 外文期刊>Biomedical and Health Informatics, IEEE Journal of >Energy-Efficient ECG Compression on Wireless Biosensors via Minimal Coherence Sensing and Weighted src='/images/tex/19122.gif' alt='ell _1'> Minimization Reconstruction
【24h】

Energy-Efficient ECG Compression on Wireless Biosensors via Minimal Coherence Sensing and Weighted src='/images/tex/19122.gif' alt='ell _1'> Minimization Reconstruction

机译:通过最小相干感测和加权对无线生物传感器进行节能ECG压缩 src =“ / images / tex / 19122.gif” alt =“ ell _1”> 最小化重构

获取原文
获取原文并翻译 | 示例

摘要

Low energy consumption is crucial for body area networks (BANs). In BAN-enabled ECG monitoring, the continuous monitoring entails the need of the sensor nodes to transmit a huge data to the sink node, which leads to excessive energy consumption. To reduce airtime over energy-hungry wireless links, this paper presents an energy-efficient compressed sensing (CS)-based approach for on-node ECG compression. At first, an algorithm called minimal mutual coherence pursuit is proposed to construct sparse binary measurement matrices, which can be used to encode the ECG signals with superior performance and extremely low complexity. Second, in order to minimize the data rate required for faithful reconstruction, a weighted minimization model is derived by exploring the multisource prior knowledge in wavelet domain. Experimental results on MIT-BIH arrhythmia database reveals that the proposed approach can obtain higher compression ratio than the state-of-the-art CS-based methods. Together with its low encoding complexity, our approach can achieve significant energy saving in both encoding process and wireless transmission.
机译:低能耗对于人体局域网(BAN)至关重要。在启用了BAN​​的ECG监视中,连续监视需要传感器节点将大量数据传输到接收器节点,这会导致过多的能耗。为了减少渴望能源的无线链路上的通话时间,本文提出了一种基于节能压缩感知(CS)的节点ECG压缩方法。首先,提出了一种称为最小互相关追踪的算法来构造稀疏二进制测量矩阵,该矩阵可用于以优异的性能和极低的复杂度对ECG信号进行编码。其次,为了最小化忠实重建所需的数据速率,通过探索小波域中的多源先验知识来导出加权最小化模型。 MIT-BIH心律失常数据库上的实验结果表明,与基于CS的最新方法相比,该方法可获得更高的压缩率。加上其较低的编码复杂度,我们的方法可以在编码过程和无线传输中实现大量节能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号