首页> 外文期刊>Biomedical and Health Informatics, IEEE Journal of >Estimating Energy Expenditure Using Body-Worn Accelerometers: A Comparison of Methods, Sensors Number and Positioning
【24h】

Estimating Energy Expenditure Using Body-Worn Accelerometers: A Comparison of Methods, Sensors Number and Positioning

机译:使用随身加速计估算能量消耗:方法,传感器数量和位置的比较

获取原文
获取原文并翻译 | 示例

摘要

Several methods to estimate energy expenditure (EE) using body-worn sensors exist; however, quantifications of the differences in estimation error are missing. In this paper, we compare three prevalent EE estimation methods and five body locations to provide a basis for selecting among methods, sensors number, and positioning. We considered 1) counts-based estimation methods, 2) activity-specific estimation methods using METs lookup, and 3) activity-specific estimation methods using accelerometer features. The latter two estimation methods utilize subsequent activity classification and EE estimation steps. Furthermore, we analyzed accelerometer sensors number and on-body positioning to derive optimal EE estimation results during various daily activities. To evaluate our approach, we implemented a study with 15 participants that wore five accelerometer sensors while performing a wide range of sedentary, household, lifestyle, and gym activities at different intensities. Indirect calorimetry was used in parallel to obtain EE reference data. Results show that activity-specific estimation methods using accelerometer features can outperform counts-based methods by and activity-specific methods using METs lookup for active clusters by . No differences were found between activity-specific methods using METs lookup and using accelerometer features for sedentary clusters. For activity-specific estimation methods using accelerometer features, differences in EE estimation error between the best combinations of each number of sensors (1 to 5), analyzed with repeated measures ANOVA, were not significant. Thus, we conclude that choosing the best performing single sensor does not reduce EE estimation accuracy compared to a five sensors system and can reliably be used. However, EE estimation errors can increase up to if a nonoptimal sensor location is chosen.
机译:存在几种使用穿戴式传感器来估计能量消耗(EE)的方法。但是,缺少估计误差差异的量化。在本文中,我们比较了三种流行的EE估计方法和五个人体位置,为选择方法,传感器数量和位置提供了基础。我们考虑了1)基于计数的估计方法,2)使用MET查找的特定活动的估计方法以及3)使用加速计功能的特定活动的估计方法。后两种估计方法利用后续的活动分类和EE估计步骤。此外,我们分析了加速度计传感器的数量和在身体上的位置,以在各种日常活动中得出最佳的EE估计结果。为了评估我们的方法,我们与15名参与者进行了一项研究,他们戴着五个加速度传感器,同时以不同强度进行了广泛的久坐,居家,生活方式和健身活动。并行使用间接量热法获得EE参考数据。结果表明,使用加速度计功能的特定于活动的估计方法的性能优于基于计数的方法,而使用METs查找活动群集的特定于活动的方法的性能优于。使用METs查找的活动特定方法和使用久坐群集的加速度计功能之间没有发现差异。对于使用加速度计功能的特定活动估算方法,使用重复测量方差分析分析的每种传感器(1至5)的最佳组合之间的EE估算误差之间的差异并不显着。因此,我们得出的结论是,与五个传感器系统相比,选择性能最佳的单个传感器不会降低EE估计精度,并且可以可靠地使用。但是,如果选择了非最佳传感器位置,则EE估计误差可能会增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号