首页> 外文期刊>Biomedical and Health Informatics, IEEE Journal of >An Improved Skin Lesion Matching Scheme in Total Body Photography
【24h】

An Improved Skin Lesion Matching Scheme in Total Body Photography

机译:全身摄影中一种改进的皮肤病变匹配方案

获取原文
获取原文并翻译 | 示例

摘要

Total body photography is used for early detection of malignant melanoma, primarily as a means of temporal skin surface monitoring. In a prior work, we presented a scanner with a set of algorithms to map and detect changes in pigmented skin lesions, thus demonstrating that it is possible to fully automate the process of total body image acquisition and processing. The key procedure in these algorithms is skin lesion matching that determines whether two images depict the same real lesion. In this paper, we aim to improve it with respect to false positive and negative outcomes. To this end, we developed two novel methods: one based on successive rigid transformations of three-dimensional point clouds and one based on nonrigid coordinate plane deformations in regions of interest around the lesions. In both approaches, we applied a robust outlier rejection procedure based on progressive graph matching. Using the images obtained from the scanner, we created a ground truth dataset tailored to diversify false positive match scenarios. The algorithms were evaluated according to their precision and recall values, and the results demonstrated the superiority of the second approach in all the tests. In the complete interpositional matching experiment, it reached a precision and recall as high as 99.92% and 81.65%, respectively, showing a significant improvement over our original method.
机译:全身摄影被用于早期发现恶性黑色素瘤,主要是作为暂时的皮肤表面监测的手段。在先前的工作中,我们为扫描仪提供了一套算法,可绘制和检测皮肤色素沉着病变的变化,从而证明可以完全自动化全身图像采集和处理的过程。这些算法中的关键过程是皮肤病变匹配,它确定两个图像是否描绘了相同的真实病变。在本文中,我们旨在针对假阳性和阴性结果进行改进。为此,我们开发了两种新颖的方法:一种基于三维点云的连续刚性变换,另一种基于病变周围感兴趣区域的非刚性坐标平面变形。在这两种方法中,我们都基于渐进图匹配应用了鲁棒的离群值剔除程序。使用从扫描仪获得的图像,我们创建了一个地面真实数据集,量身定制了多样化的误报匹配方案。根据算法的精度和查全率对算法进行了评估,结果证明了第二种方法在所有测试中的优越性。在完全的插入匹配实验中,其准确率和查全率分别高达99.92%和81.65%,显示了对我们原始方法的显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号